The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis.

We report ultrafast femtosecond transient absorption measurements of energy-transfer dynamics for the antenna protein phycoerythrin 545, PE545, isolated from a unicellular cryptophyte Rhodomonas CS24. The phycoerythrobilins are excited at both 485 and 530 nm, and the spectral response is probed between 400 and 700 nm. Room-temperature measurements are contrasted with measurements at 77 K. An evolution-associated difference spectra (EADS) analysis is combined with estimations of bilin spectral positions and energy-transfer rates to obtain a detailed kinetic model for PE545. It is found that sub pulse-width dynamics include relaxation between the exciton states of a chromophore dimer (beta 50/60) located in the core of the protein. Energy transfer from the lowest exciton state of the phycoerythrobilin (PEB) dimer to one of the periphery 15,16-dihydrobiliverdin (DBV) bilins is found to occur on a time scale of 250 fs at room temperature and 960 fs at 77 K. A host of energy-transfer dynamics involving the beta 158, beta 82, and alpha 19 bilins occur on a time scale of 2 ps at room temperature and 3 ps at 77 K. A final energy transfer occurs between the red-most DBV bilins with a time scale estimated to be approximately 30 ps. The role of the centrally located phycoerythrobilin dimer is seen as crucial-spectrally as it expands the cross-section of absorption of the protein; structurally as it sits in the middle of the protein acting as an intermediary trap; and kinetically, as the internal conversion and subsequent red-shift of the excitation is extremely fast.[1]


  1. Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis. Doust, A.B., van Stokkum, I.H., Larsen, D.S., Wilk, K.E., Curmi, P.M., van Grondelle, R., Scholes, G.D. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical. (2005) [Pubmed]
WikiGenes - Universities