The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Energy Transfer

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Energy Transfer

 

High impact information on Energy Transfer

 

Chemical compound and disease context of Energy Transfer

 

Biological context of Energy Transfer

  • Molecular conformations were analyzed by fluorescence resonance energy transfer (FRET) between fluorescent-labeled Fab fragments bound to the alpha 2 domain of the MHC heavy chain and fluorescent-labeled Fab fragments bound to beta 2-microglobulin [16].
  • The regulation of light harvesting in higher plant photosynthesis, defined as stress-dependent modulation of the ratio of energy transfer to the reaction centers versus heat dissipation, was studied by means of carotenoid biosynthesis mutants and recombinant light harvesting complexes (LHCs) with modified chromophore binding [17].
  • This process involves mechanochemical energy transfer from a rotating asymmetric gamma-'stalk' to the three active sites of the F1 unit, which drives the bound ATP out of the binding pocket [18].
  • By exciting a Trp residue in the coordination sequence, Tb(3+) bound to the EF-hand motif is sensitized specifically, and the efficiency of energy transfer to strategically placed Cys residues labeled with fluorophors is measured [19].
  • We have identified by Fluorescence Resonance Energy Transfer a new series of quinoline-based G-quadruplex ligands that also exhibit potent and specific anti-telomerase activity with IC50 in the nanomolar concentration range [20].
 

Anatomical context of Energy Transfer

 

Associations of Energy Transfer with chemical compounds

  • Energy transfer between fluorescein and Texas Red was observed in the "floppy" alpha beta heterodimer band, but not in the "compact" alpha beta heterodimer band [26].
  • Thus, energy transfer from O2 to the protein moiety is used as a strategy to avoid toxic intermediates and to control energy utilization in subsequent proton-pumping events [27].
  • The structural basis for efficient excitonic energy transfer from peridinin to chlorophyll is found in the clustering of peridinins around the chlorophylls at van der Waals distances [28].
  • H(2)O(2) induced a rapid, reversible, Cys723-dependent conformational change in vivo, as detected by fluorescence resonance energy transfer, with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) flanking RPTPalpha-SpD2 in a single chimeric protein [29].
  • Fluorescence resonance energy transfer (FRET) detection in fusion constructs consisting of green fluorescent protein (GFP) variants linked by a sequence that changes conformation upon modification by enzymes or binding of ligands has enabled detection of physiological processes such as Ca(2+) ion release, and protease and kinase activity [30].
 

Gene context of Energy Transfer

 

Analytical, diagnostic and therapeutic context of Energy Transfer

References

  1. IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Vámosi, G., Bodnár, A., Vereb, G., Jenei, A., Goldman, C.K., Langowski, J., Tóth, K., Mátyus, L., Szöllösi, J., Waldmann, T.A., Damjanovich, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Alpha-synuclein structures from fluorescence energy-transfer kinetics: implications for the role of the protein in Parkinson's disease. Lee, J.C., Langen, R., Hummel, P.A., Gray, H.B., Winkler, J.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  3. IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., Miki, H. Cancer Res. (2004) [Pubmed]
  4. Insight into the catalytic mechanism of Pseudomonas aeruginosa exotoxin A. Studies of toxin interaction with eukaryotic elongation factor-2. Armstrong, S., Yates, S.P., Merrill, A.R. J. Biol. Chem. (2002) [Pubmed]
  5. Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation. Regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. Tsukatani, Y., Miyamoto, R., Itoh, S., Oh-Oka, H. J. Biol. Chem. (2004) [Pubmed]
  6. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Chapados, B.R., Hosfield, D.J., Han, S., Qiu, J., Yelent, B., Shen, B., Tainer, J.A. Cell (2004) [Pubmed]
  7. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Mekler, V., Kortkhonjia, E., Mukhopadhyay, J., Knight, J., Revyakin, A., Kapanidis, A.N., Niu, W., Ebright, Y.W., Levy, R., Ebright, R.H. Cell (2002) [Pubmed]
  8. Functional interaction of phytochrome B and cryptochrome 2. Más, P., Devlin, P.F., Panda, S., Kay, S.A. Nature (2000) [Pubmed]
  9. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Lunde, C., Jensen, P.E., Haldrup, A., Knoetzel, J., Scheller, H.V. Nature (2000) [Pubmed]
  10. Initial hydrophobic collapse in the folding of barstar. Agashe, V.R., Shastry, M.C., Udgaonkar, J.B. Nature (1995) [Pubmed]
  11. Energy transfer measurements of fusion between Sendai virus and vesicles corrected for decreased absorption of acceptor probe. MacDonald, R.I. J. Biol. Chem. (1987) [Pubmed]
  12. Site-specific inhibitors of NADPH oxidase activity and structural probes of flavocytochrome b: characterization of six monoclonal antibodies to the p22phox subunit. Taylor, R.M., Burritt, J.B., Baniulis, D., Foubert, T.R., Lord, C.I., Dinauer, M.C., Parkos, C.A., Jesaitis, A.J. J. Immunol. (2004) [Pubmed]
  13. Fusion between Sendai virus envelopes and biological membranes. The use of fluorescent probes for quantitative estimation of virus-membrane fusion. Chejanovsky, N., Loyter, A. J. Biol. Chem. (1985) [Pubmed]
  14. Enhancement of carotenoid-to-chlorophyll singlet energy transfer by carotenoid-carotenoid interaction. Zurdo, J., Fernández-Cabrera, C., Ramírez, J.M. Biophys. J. (1992) [Pubmed]
  15. Myocardial enzyme activities in patients with mitral regurgitation or mitral stenosis. Jansson, E., Sylvén, C., Henze, A., Kaijser, L. Cardiovasc. Res. (1987) [Pubmed]
  16. Analysis of the structure of empty and peptide-loaded major histocompatibility complex molecules at the cell surface. Catipović, B., Talluri, G., Oh, J., Wei, T., Su, X.M., Johansen, T.E., Edidin, M., Schneck, J.P. J. Exp. Med. (1994) [Pubmed]
  17. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Dall'Osto, L., Caffarri, S., Bassi, R. Plant Cell (2005) [Pubmed]
  18. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Böckmann, R.A., Grubmüller, H. Nat. Struct. Biol. (2002) [Pubmed]
  19. Engineering a terbium-binding site into an integral membrane protein for luminescence energy transfer. Vázquez-Ibar, J.L., Weinglass, A.B., Kaback, H.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  20. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Riou, J.F., Guittat, L., Mailliet, P., Laoui, A., Renou, E., Petitgenet, O., Mégnin-Chanet, F., Hélène, C., Mergny, J.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  21. Molecular interactions at the T cell-antigen-presenting cell interface. Gascoigne, N.R., Zal, T. Curr. Opin. Immunol. (2004) [Pubmed]
  22. Galpha i3 binding to calnuc on Golgi membranes in living cells monitored by fluorescence resonance energy transfer of green fluorescent protein fusion proteins. Weiss, T.S., Chamberlain, C.E., Takeda, T., Lin, P., Hahn, K.M., Farquhar, M.G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  23. CD4-T-cell antigen receptor complexes on human leukemia T cells. Chuck, R.S., Cantor, C.R., Tse, D.B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  24. tRNA dynamics on the ribosome during translation. Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Puglisi, J.D., Chu, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  25. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Baneyx, G., Baugh, L., Vogel, V. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  26. Energy transfer between two peptides bound to one MHC class II molecule. Tampé, R., Clark, B.R., McConnell, H.M. Science (1991) [Pubmed]
  27. Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Proshlyakov, D.A., Pressler, M.A., DeMaso, C., Leykam, J.F., DeWitt, D.L., Babcock, G.T. Science (2000) [Pubmed]
  28. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Hofmann, E., Wrench, P.M., Sharples, F.P., Hiller, R.G., Welte, W., Diederichs, K. Science (1996) [Pubmed]
  29. Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. Blanchetot, C., Tertoolen, L.G., den Hertog, J. EMBO J. (2002) [Pubmed]
  30. Imaging FRET between spectrally similar GFP molecules in single cells. Harpur, A.G., Wouters, F.S., Bastiaens, P.I. Nat. Biotechnol. (2001) [Pubmed]
  31. Caspase-10 is an initiator caspase in death receptor signaling. Wang, J., Chun, H.J., Wong, W., Spencer, D.M., Lenardo, M.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  32. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein a complex formation. Kim, K., Dimitrova, D.D., Carta, K.M., Saxena, A., Daras, M., Borowiec, J.A. Mol. Cell. Biol. (2005) [Pubmed]
  33. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Yoon, Y., Krueger, E.W., Oswald, B.J., McNiven, M.A. Mol. Cell. Biol. (2003) [Pubmed]
  34. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Deaglio, S., Zubiaur, M., Gregorini, A., Bottarel, F., Ausiello, C.M., Dianzani, U., Sancho, J., Malavasi, F. Blood (2002) [Pubmed]
  35. Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Parsons, M., Monypenny, J., Ameer-Beg, S.M., Millard, T.H., Machesky, L.M., Peter, M., Keppler, M.D., Schiavo, G., Watson, R., Chernoff, J., Zicha, D., Vojnovic, B., Ng, T. Mol. Cell. Biol. (2005) [Pubmed]
  36. Structure of the T cell antigen receptor (TCR): two CD3 epsilon subunits in a functional TCR/CD3 complex. de la Hera, A., Müller, U., Olsson, C., Isaaz, S., Tunnacliffe, A. J. Exp. Med. (1991) [Pubmed]
  37. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Panyi, G., Bagdány, M., Bodnár, A., Vámosi, G., Szentesi, G., Jenei, A., Mátyus, L., Varga, S., Waldmann, T.A., Gáspar, R., Damjanovich, S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  38. Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Isotani, E., Zhi, G., Lau, K.S., Huang, J., Mizuno, Y., Persechini, A., Geguchadze, R., Kamm, K.E., Stull, J.T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  39. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Baneyx, G., Baugh, L., Vogel, V. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  40. Signaling functions of L-selectin in neutrophils: alterations in the cytoskeleton and colocalization with CD18. Simon, S.I., Cherapanov, V., Nadra, I., Waddell, T.K., Seo, S.M., Wang, Q., Doerschuk, C.M., Downey, G.P. J. Immunol. (1999) [Pubmed]
 
WikiGenes - Universities