The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats.

The purpose of this study was to determine if robotic-assisted treadmill training improved hindlimb stepping in complete spinal cord transected (ST) rats. In addition, we examined whether chronic quipazine treatment would enhance the effectiveness of robotic-assisted training. Hindlimb stepping was examined in four groups of ST rats: trained + quipazine; trained + vehicle; untrained + quipazine; and untrained + vehicle. To train the rats to step, a robotic device was used that moved the hindlimbs in a semi-fixed trajectory during treadmill stepping. The robotic device was also used to assess treadmill stepping. Quipazine or vehicle was administered to the lumbar spinal cord using an intrathecal cannula. The groups that received robotic-assisted training performed more stepping movements on the treadmill than the untrained groups 10 weeks after ST. However, no differences were found between the robotic-assisted and untrained groups 16 weeks after ST. Kinematic analyses revealed that abnormally small step cycles were performed by all of the groups of ST rats. There was no significant effect of combining robotic-assisted training and quipazine treatment on stepping recovery. These data suggest that robotic-assisted training may generate hindlimb sensory stimuli that are effective in enhancing the ability of the lumbar spinal cord to generate hindlimb stepping. However, the effectiveness of robotic-assisted training may be limited to the early stages of recovery following spinal cord transection.[1]

References

 
WikiGenes - Universities