Pheromone Discrimination by the Pheromone-Binding Protein of Bombyx mori.
Pheromone-binding proteins are postulated to contribute to the exquisite specificity of the insect's olfactory system, acting as a filter by preferentially binding only one of the components of the natural pheromone. Here, we investigated the possible discrimination of the two very similar components of the natural pheromone gland from the silk moth, Bombyx mori, bombykol and bombykal, by the only pheromone-binding protein (BmorPBP) known to be expressed in the pheromone-detecting sensilla. Free-energy calculations and virtual docking indicate that both bombykol and bombykal bind to BmorPBP with similar affinity. In addition, in vitro competitive binding assays showed that both bombykol and bombykal were bound by BmorPBP with nearly the same high affinity. While BmorPBP might filter out other physiologically irrelevant compounds hitting the sensillar lymph, discrimination between the natural pheromone compounds must be achieved by molecular interactions with their cognate receptors.[1]References
- Pheromone Discrimination by the Pheromone-Binding Protein of Bombyx mori. Gr??ter, F., Xu, W., Leal, W., Grubm??ller, H. Structure (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg