The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of ethanol responsive domains of adenylyl cyclase.

Background: The activity of adenylyl cyclase (AC) is enhanced by pharmacologically relevant concentrations of ethanol. The enhancing effect of ethanol on AC activity is AC isoform-specific. Therefore, we hypothesized that within a cyclic AMP-generating system, AC is the target of ethanol's action and that ethanol-sensitive AC molecules contain structural elements modulated by ethanol. The structural elements are designated as "ethanol responsive domains." Methods: By using a series of chimeric mutants, we searched regions of the AC molecule that are important for the ethanol effect. These chimeric mutants were derived from 3 isoforms of AC: AC7 (type 7), the most ethanol responsive isoform; AC3 (type 3), an isoform that is far less responsive to ethanol; and AC2 (type 2), an isoform that is homologous to AC7 but less responsive to ethanol. Results: We identified 2 discrete regions of the AC molecule that are important for the enhancement of AC activity by ethanol. The first is the N-terminal 28-amino-acid (aa) region of the C(1a) domain. The second is the C-terminal region ( approximately 140 aa) of the AC molecule. Sequence differences in the N-terminal tail, 2 putative transmembrane domains, and the C(1b) domain are not important for ethanol's effect. Conclusions: The current study with mammalian ACs provides a new class of alcohol-responsive protein and possibly a new mechanism of alcohol action on cellular function. The identification of ethanol responsive domains will facilitate the elucidation of the mechanisms by which ethanol enhances the activity of AC.[1]

References

  1. Identification of ethanol responsive domains of adenylyl cyclase. Yoshimura, M., Pearson, S., Kadota, Y., Gonzalez, C.E. Alcohol. Clin. Exp. Res. (2006) [Pubmed]
 
WikiGenes - Universities