Substrate competition as a source of ultrasensitivity in the inactivation of wee1.
The mitotic regulators Wee1 and Cdk1 can inactivate each other through inhibitory phosphorylations. This double-negative feedback loop is part of a bistable trigger that makes the transition into mitosis abrupt and decisive. To generate a bistable response, some component of a double-negative feedback loop must exhibit an ultrasensitive response to its upstream regulator. Here, we experimentally demonstrate that Wee1 exhibits a highly ultrasensitive response to Cdk1. Several mechanisms can, in principle, give rise to ultrasensitivity, including zero-order effects, multisite phosphorylation, and competition mechanisms. We found that the ultrasensitivity in the inactivation of Wee1 arises mainly through two competition mechanisms: competition between two sets of phosphorylation sites in Wee1 and between Wee1 and other high-affinity Cdk1 targets. Based on these findings, we were able to reconstitute a highly ultrasensitive Wee1 response with purified components. Competition provides a simple way of generating the equivalent of a highly cooperative allosteric response.[1]References
- Substrate competition as a source of ultrasensitivity in the inactivation of wee1. Kim, S.Y., Ferrell, J.E. Cell (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg