The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Phosphorylation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Phosphorylation

 

Psychiatry related information on Phosphorylation

 

High impact information on Phosphorylation

  • Regulation of tyrosine phosphorylation is a critical control point for integration of environmental signals into cellular responses [11].
  • This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation [12].
  • After phosphorylation, the IKK phosphoacceptor sites on IkappaB serve as an essential part of a specific recognition site for E3RS(IkappaB/beta-TrCP), an SCF-type E3 ubiquitin ligase, thereby explaining how IKK controls IkappaB ubiquitination and degradation [13].
  • Its effects depend upon binding to and signaling through a receptor complex consisting of the IL-4R alpha chain and the common gamma chain (gamma c), resulting in a series of phosphorylation events mediated by receptor-associated kinases [14].
  • BID and BAD possess the minimal death domain BH3, and the phosphorylation of BAD connects proximal survival signals to the BCL-2 family [15].
 

Chemical compound and disease context of Phosphorylation

 

Biological context of Phosphorylation

 

Anatomical context of Phosphorylation

  • This serendipitous discovery linked CD45 to the process of reversible protein tyrosine phosphorylation, a key regulatory mechanism for controlling the growth and division of eukaryotic cells, and provided the impetus for most of the studies described in this review [26].
  • These properties of the transformed state are achieved at levels of pp60v-src far below levels found in an RSV-transformed cell line, without detectable increase in phosphorylation of the major cellular target for tyrosine phosphorylation [27].
  • Overexpression of the mutant gene in murine fibroblasts led to the production of a protein in which the phosphorylation of serine at position 114 was defective, as well as to accelerated differentiation of the cells into adipocytes and greater cellular accumulation of triglyceride than with the wild-type PPARgamma2 [28].
  • Although Angiopoietin-1 binds and induces the tyrosine phosphorylation of TIE2, it does not directly promote the growth of cultured endothelial cells [29].
  • Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF) [30].
 

Associations of Phosphorylation with chemical compounds

  • The initial membrane proximal event triggered by the TCR is activation of protein tyrosine kinases with the resultant phosphorylation of cellular proteins [31].
  • Phosphorylation of a cytoplasmic serine promotes transcytosis of the pIgR without ligand bound [32].
  • The SNF1 complex acts primarily by inducing expression of genes required for catabolic pathways that generate glucose, probably by triggering phosphorylation of transcription factors [33].
  • PP-1 can be inhibited by cyclic AMP in a variety of cells through the A-kinase-catalyzed phosphorylation of inhibitor-1 and its isoforms [34].
  • The paradigm of Akt activation via phosphoinositide-dependent phosphorylation provided a framework for research into the mechanism of activation of other members of the AGC kinase group (p70S6K, PKC, and PKA) and members of the Tec tyrosine kinase family (TecI, TecII, Btk/Atk, Itk/Tsk/Emt, Txk/Rlk, and Bm/Etk) [35].
 

Gene context of Phosphorylation

 

Analytical, diagnostic and therapeutic context of Phosphorylation

References

  1. Oxygen sensing and molecular adaptation to hypoxia. Bunn, H.F., Poyton, R.O. Physiol. Rev. (1996) [Pubmed]
  2. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Nishimura, I., Yang, Y., Lu, B. Cell (2004) [Pubmed]
  3. HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Gallay, P., Swingler, S., Aiken, C., Trono, D. Cell (1995) [Pubmed]
  4. Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Fagan, R., Flint, K.J., Jones, N. Cell (1994) [Pubmed]
  5. Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Radke, K., Gilmore, T., Martin, G.S. Cell (1980) [Pubmed]
  6. Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Farassati, F., Yang, A.D., Lee, P.W. Nat. Cell Biol. (2001) [Pubmed]
  7. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's Disease. Lu, K.P., Liou, Y.C., Vincent, I. Bioessays (2003) [Pubmed]
  8. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. von Gall, C., Duffield, G.E., Hastings, M.H., Kopp, M.D., Dehghani, F., Korf, H.W., Stehle, J.H. J. Neurosci. (1998) [Pubmed]
  9. Spatial memory deficits, increased phosphorylation of the transcription factor CREB, and induction of the AP-1 complex following experimental brain injury. Dash, P.K., Moore, A.N., Dixon, C.E. J. Neurosci. (1995) [Pubmed]
  10. Pick bodies in a family with presenilin-1 Alzheimer's disease. Halliday, G.M., Song, Y.J., Lepar, G., Brooks, W.S., Kwok, J.B., Kersaitis, C., Gregory, G., Shepherd, C.E., Rahimi, F., Schofield, P.R., Kril, J.J. Ann. Neurol. (2005) [Pubmed]
  11. CD45: a critical regulator of signaling thresholds in immune cells. Hermiston, M.L., Xu, Z., Weiss, A. Annu. Rev. Immunol. (2003) [Pubmed]
  12. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Samelson, L.E. Annu. Rev. Immunol. (2002) [Pubmed]
  13. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Karin, M., Ben-Neriah, Y. Annu. Rev. Immunol. (2000) [Pubmed]
  14. The IL-4 receptor: signaling mechanisms and biologic functions. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J., Paul, W.E. Annu. Rev. Immunol. (1999) [Pubmed]
  15. BCL-2 family: regulators of cell death. Chao, D.T., Korsmeyer, S.J. Annu. Rev. Immunol. (1998) [Pubmed]
  16. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Wang, Y.T., Salter, M.W. Nature (1994) [Pubmed]
  17. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Udo, H., Munoz-Dorado, J., Inouye, M., Inouye, S. Genes Dev. (1995) [Pubmed]
  18. CcpA-dependent carbon catabolite repression in bacteria. Warner, J.B., Lolkema, J.S. Microbiol. Mol. Biol. Rev. (2003) [Pubmed]
  19. A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Hua, Z.C., Sohn, S.J., Kang, C., Cado, D., Winoto, A. Immunity (2003) [Pubmed]
  20. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J., Vogel, S.N. Nat. Immunol. (2002) [Pubmed]
  21. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Hirschberg, C.B., Robbins, P.W., Abeijon, C. Annu. Rev. Biochem. (1998) [Pubmed]
  22. Protein tyrosine kinase structure and function. Hubbard, S.R., Till, J.H. Annu. Rev. Biochem. (2000) [Pubmed]
  23. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Gadsby, D.C., Nairn, A.C. Physiol. Rev. (1999) [Pubmed]
  24. Physiological regulation of G protein-linked signaling. Morris, A.J., Malbon, C.C. Physiol. Rev. (1999) [Pubmed]
  25. Histidine phosphorylation of P-selectin upon stimulation of human platelets: a novel pathway for activation-dependent signal transduction. Crovello, C.S., Furie, B.C., Furie, B. Cell (1995) [Pubmed]
  26. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Trowbridge, I.S., Thomas, M.L. Annu. Rev. Immunol. (1994) [Pubmed]
  27. Hormonal regulation of the Rous sarcoma virus src gene via a heterologous promoter defines a threshold dose for cellular transformation. Jakobovits, E.B., Majors, J.E., Varmus, H.E. Cell (1984) [Pubmed]
  28. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. Ristow, M., Müller-Wieland, D., Pfeiffer, A., Krone, W., Kahn, C.R. N. Engl. J. Med. (1998) [Pubmed]
  29. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Davis, S., Aldrich, T.H., Jones, P.F., Acheson, A., Compton, D.L., Jain, V., Ryan, T.E., Bruno, J., Radziejewski, C., Maisonpierre, P.C., Yancopoulos, G.D. Cell (1996) [Pubmed]
  30. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Shen, Y., Naujokas, M., Park, M., Ireton, K. Cell (2000) [Pubmed]
  31. T cell antigen receptor signal transduction pathways. Cantrell, D. Annu. Rev. Immunol. (1996) [Pubmed]
  32. Transepithelial transport of immunoglobulins. Mostov, K.E. Annu. Rev. Immunol. (1994) [Pubmed]
  33. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Hardie, D.G., Carling, D., Carlson, M. Annu. Rev. Biochem. (1998) [Pubmed]
  34. The structure and regulation of protein phosphatases. Cohen, P. Annu. Rev. Biochem. (1989) [Pubmed]
  35. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Chan, T.O., Rittenhouse, S.E., Tsichlis, P.N. Annu. Rev. Biochem. (1999) [Pubmed]
  36. The role of the CD28 receptor during T cell responses to antigen. Linsley, P.S., Ledbetter, J.A. Annu. Rev. Immunol. (1993) [Pubmed]
  37. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Kokai, Y., Myers, J.N., Wada, T., Brown, V.I., LeVea, C.M., Davis, J.G., Dobashi, K., Greene, M.I. Cell (1989) [Pubmed]
  38. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Wilde, A., Beattie, E.C., Lem, L., Riethof, D.A., Liu, S.H., Mobley, W.C., Soriano, P., Brodsky, F.M. Cell (1999) [Pubmed]
  39. TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Ewen, M.E., Sluss, H.K., Whitehouse, L.L., Livingston, D.M. Cell (1993) [Pubmed]
  40. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Mowen, K.A., Tang, J., Zhu, W., Schurter, B.T., Shuai, K., Herschman, H.R., David, M. Cell (2001) [Pubmed]
  41. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., dalla Zonca, P., Giordano, S., Graziani, A., Panayotou, G., Comoglio, P.M. Cell (1994) [Pubmed]
  42. Local mutagenesis of Rous sarcoma virus: the major sites of tyrosine and serine phosphorylation of pp60src are dispensable for transformation. Cross, F.R., Hanafusa, H. Cell (1983) [Pubmed]
  43. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Dérijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., Davis, R.J. Cell (1994) [Pubmed]
  44. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Raymond, L.A., Blackstone, C.D., Huganir, R.L. Nature (1993) [Pubmed]
  45. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Shuai, K., Ziemiecki, A., Wilks, A.F., Harpur, A.G., Sadowski, H.B., Gilman, M.Z., Darnell, J.E. Nature (1993) [Pubmed]
 
WikiGenes - Universities