The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers.

We studied the covalent inhibition of lipases by the monolayer technique. We report the inactivation of porcine pancreatic and human and rabbit gastric lipases, acting on mixed monomolecular films of dicaprin containing tetrahydrolipstatin or new hydrophobic disulfide compounds, which can be described as a 'poisoned-interface' system. A kinetic model is presented for depicting the covalent inactivation of lipolytic enzymes at a lipid/water interface. The stoichiometry of the interfacial situation can be described as follows: one lipase molecule embedded among 10(5) substrate molecules will be inactivated to half its initial velocity by the presence of 10 tetrahydrolipstatin molecules. This inactivation was independent of the surface pressure. When tested in the form of mixed films, all the disulfide compounds investigated specifically reduced the hydrolysis of 1,2-didecanoyl-sn-glycerol films by gastric lipases, but did not affect hydrolysis by pancreatic lipase. With this poisoned-interface system, tetrahydrolipstatin was found to be the most potent inactivator, whereas disulfide compounds showed a higher degree of selectivity than tetrahydrolipstatin.[1]

References

 
WikiGenes - Universities