The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Key considerations in the treatment of complicated staphylococcal infections.

Substantial increases in antimicrobial resistance among Gram-positive pathogens, particularly Staphylococcus aureus, are compromising traditional therapies for serious bacterial infections. There has been an alarming increase in the rates of methicillin-resistant S. aureus (MRSA) over the past two decades, and the more recent emergence of heterogenous vancomycin-intermediate (hVISA), vancomycin-intermediate (VISA) and vancomycin-resistant S. aureus (VRSA) strains limits the use of vancomycin, the current standard of care for MRSA infections. Tolerance to vancomycin, which represents a lack of bactericidal activity of vancomycin, is another troublesome property of some S. aureus strains that can adversely affect the outcome of antimicrobial therapy. Increasing MICs of vancomycin for staphylococci, poor tissue penetration by the drug and a slow rate of bactericidal action of the drug have also raised concerns about its efficacy in the contemporary treatment of MRSA infections. There is an increasingly apparent need for new agents for the treatment of staphylococcal infections, ideally with potent bactericidal activity against MRSA, hVISA, VISA and VRSA and with superior susceptibility profiles as compared with glycopeptides.[1]

References

 
WikiGenes - Universities