The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A cunning stunt: an alternative mechanism of eukaryotic translation initiation.

Cell stress activates signaling pathways, allowing cells to choose between survival and apoptosis. Translation plays a critical role in balancing this choice by allowing for rapid and physiologically responsive changes in de novo gene expression. The steady-state abundance of cellular inhibitor of apoptosis 2 (cIAP2) is increased in response to various cell stresses. This modular protein contains baculoviral IAP repeat (BIR) motifs and ubiquitin protein ligase (E3) activity, which allows it to bind directly to caspases and to modulate activation of the transcription factor, nuclear factor kappaB (NF-kappaB). The messenger RNA (mRNA) encoding cIAP2 is a large 5.5-kb transcript, with a highly structured 5' untranslated region (5'UTR) also containing 64 upstream initiation codons ahead of the true start codon. cIAP2 employs an unusual cap-dependent mechanism of ribosome shunting to bypass the majority of the inhibitory elements in the 5'UTR, a mechanism first described for plant pararetroviruses. Furthermore, in mammalian cells, this poorly understood mechanism of translation for cIAP2 is enhanced during mild stress in the absence of pararetrovirus-encoded proteins known to be essential for this process in plant cells. Here, we discuss how cIAP2 might utilize the stress-mediated shunt process in the absence of viral proteins, which suggests a more widespread role for canonical initiation factors, internal ribosome entry sequence-specific trans-acting factors, and mRNA structure in translational control during stress.[1]

References

 
WikiGenes - Universities