The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins.

Genes encoding fusions between the maize regulatory protein C1 and the yeast transcriptional activator GAL4 and mutant C1 proteins were assayed for their ability to trans-activate anthocyanin biosynthetic genes in intact maize tissues. The putative DNA-binding region of C1 fused to the transcriptional activation domain of GAL4 activated transcription of anthocyanin structural gene promoters in c1 aleurones, c1 Rscm2 embryos, and c1 r embryogenic callus. Cells receiving these constructs accumulated purple anthocyanin pigments. The C1 acidic region fused to the GAL4 DNA-binding domain activated transcription of a GAL4-regulated promoter. An internal deletion of C1 also induced pigmentation; however, frameshifts in either the amino-terminal basic or carboxy-terminal acidic region blocked trans-activation, and the latter generated a dominant inhibitory protein. Fusion constructs between the wild-type C1 cDNA and the dominant inhibitor allele C1-I cDNA were used to identify the amino acid changes in C1 responsible for the C1-I inhibitory phenotype. Results from these studies establish that amino acids within the myb-homologous domain are critical for transcriptional activation.[1]

References

 
WikiGenes - Universities