The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions.

Distribution of vascular endothelial cell growth factor A (VEGF-A) as a gradient determines microvascular endothelial cell (EC) fate during organogenesis. While much is understood about mechanisms of differential distribution, less is known about how EC perceive and interpret a graded VEGF-A signal to generate positional target gene activation. Using microvascular EC, we analyzed the effect of time and graded VEGF-A input on VEGFR2 autophosphorylation, signal kinase activation and induction of immediate-early genes. The threshold and time to peak activation of VEGFR2 were dependent on signal strength over a 50-fold range in concentration with 3-fold concentration differences readily distinguished. Longer duration of exposure did not compensate for low concentration of VEGF-A, suggesting intensity and duration of signal were not interpreted equivalently. With the same conditions, graded and time-sensitive information was transduced through the PLCgamma/p44/p42MAPK signal pathway but not the parallel AKT pathway. Analysis of MAPK-induced angiogenic immediate-early genes determined that EGR-1, EGR-3, and NR4A1 were dependent on graded input while NR4A2 and DSCR1 were independent with 'switch-like' induction. These data demonstrate rapid, linear integration of VEGF-A levels but independent interpretation of duration of signal and identify potential nodes for segregation of gradient-dependent and -independent responses. These results describe how microvascular EC fate decisions can be determined by comparatively moderate changes in VEGF signal strength, resulting in combinatorial changes in the repertoire of immediate-early genes for transcription effectors.[1]

References

  1. Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions. Akeson, A., Herman, A., Wiginton, D., Greenberg, J. Microvasc. Res. (2010) [Pubmed]
 
WikiGenes - Universities