The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli.

It has been postulated that the N-acyl fatty acid attached to the amino terminus of the major Escherichia coli lipoprotein is derived from the fatty acid at the 1-position of phosphatidylethanolamine (PtdEtn) (Jackowski, S., and Rock, C.O. (1986) J. Biol. Chem. 261, 11328-11333). To ascertain the role of PtdEtn in the conversion of apolipoprotein to the mature lipoprotein, the lipoprotein from E. coli strain AH930 (pss::kan) containing a null mutation in the phosphatidylserine synthase gene (pss) was studied. Pulse labeling with [35S]methionine for 30 s or 5 min revealed the formation of mature lipoprotein in both wild-type (W3110) and mutant (AH930) cells. [3H]Palmitate-labeled lipoproteins from both the mutant and wild-type cells were found to contain nearly identical amounts of alkali-resistant (amide-linked, 41-42%) and alkali-labile (ester-linked, 58-59%) fatty acids. Edman degradation and dansylation of the immuno-affinity-purified [35S]cysteine-labeled lipoprotein showed that the NH2 terminus of the lipoprotein in the mutant was blocked as in the wild type. In vitro assay of apolipoprotein N-acyltransferase using membranes either from the mutant or the wild-type strain as the source of both the enzyme and the acyl donor revealed that both membranes were equally active in the conversion of [35S]methionine- labeled apolipoprotein to lipoprotein. These data strongly suggest that PtdEtn is not essential for the N-acylation of apolipoprotein to form lipoprotein, and other major phospholipids such as phosphatidylglycerol and cardiolipin can serve as the donor of fatty acid in the N-acylation of apolipoprotein.[1]

References

 
WikiGenes - Universities