The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Membranes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Membranes

 

Psychiatry related information on Membranes

 

High impact information on Membranes

  • Identification of naturally occurring antigens presented by CD1 has revealed the surprising finding that these are predominantly a variety of foreign lipids and glycolipids, including several found prominently in the cell walls and membranes of pathogenic mycobacteria [11].
  • Moreover, BCL-XL, BCL-2, and BAX can form ion-conductive pores in artificial membranes [12].
  • A model for the role of LFA-3 lateral diffusion in adhesion is presented, based on the lateral diffusion of different LFA-3 forms in glass supported planar membranes [13].
  • AQP1 is distributed in apical and basolateral membranes of renal proximal tubules and descending thin limbs as well as capillary endothelia [14].
  • Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes [15].
 

Chemical compound and disease context of Membranes

 

Biological context of Membranes

 

Anatomical context of Membranes

  • Because of the greater affinity of merocyanine 540 for fluid--phase lipid bilayers, these results suggest that the external leaflet of erythrocyte membranes becomes more disordered upon alteration or loss of the internal spectrin network [26].
  • Using isolated membranes, we find that fusion between ER compartments requires ATP, but not cytosol, Sec17p (alpha-SNAP), or Sec18p (NSF), the latter two being required at the fusion step in vesicular transport [27].
  • The inhibitory activity of IgG from the patients with IDDM was abolished by preincubation with islet cells and membranes from hepatocytes, which contain the same glucose transporter as beta cells, but not with erythrocytes, which do not contain this transporter [28].
  • The fusion of endoplasmic reticulum (ER) membranes in yeast does not require Sec18p/NSF and Sec17p, two proteins needed for docking of vesicles with their target membrane [29].
  • It is expressed on apical membranes of renal proximal tubule and intestinal epithelial cells and is thought to play a major role in NaCl and HCO3- absorption [30].
 

Associations of Membranes with chemical compounds

  • Cholesterol, an essential component of cellular membranes, is synthesized on the ER surface [31].
  • Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell [32].
  • Studies of receptor-rich membranes and of solubilized receptor glycoprotein have not yet yielded a totally satisfactory image of receptor structure [33].
  • Effects of serine/threonine protein phosphatases on ion channels in excitable membranes [34].
  • To investigate the possible effect on such enzymes of long-term consumption of large quantities of ethanol, we assayed the activities of two enzymes, monoamine oxidase and adenylate cyclase, in platelet membranes of men with alcoholism and controls matched for sex and age [35].
 

Gene context of Membranes

  • Finally, it is possible that the phospholipid changes induced in various cellular membranes by phospholipase D may per se play an important role in vesicle trafficking and other membrane-associated events [36].
  • This colocalization occurs in ruffling membranes formed upon AIF4 and EGF stimulation and is blocked by dominant-negative ARF6 [37].
  • Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins [38].
  • Instead, ER membranes require a NSF-related ATPase, Cdc48p [29].
  • Radixin (encoded by Rdx) is the dominant ERM protein in the liver of wildtype mice and is concentrated at bile canalicular membranes (BCMs) [3].
 

Analytical, diagnostic and therapeutic context of Membranes

References

  1. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Locher, K.P., Rees, B., Koebnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J.P., Moras, D. Cell (1998) [Pubmed]
  2. Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor. Paterson, R.G., Lamb, R.A. Cell (1987) [Pubmed]
  3. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Kikuchi, S., Hata, M., Fukumoto, K., Yamane, Y., Matsui, T., Tamura, A., Yonemura, S., Yamagishi, H., Keppler, D., Tsukita, S., Tsukita, S. Nat. Genet. (2002) [Pubmed]
  4. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Brown, D., Orci, L. Nature (1983) [Pubmed]
  5. Parathyroid hormone-related protein of malignancy: active synthetic fragments. Kemp, B.E., Moseley, J.M., Rodda, C.P., Ebeling, P.R., Wettenhall, R.E., Stapleton, D., Diefenbach-Jagger, H., Ure, F., Michelangeli, V.P., Simmons, H.A. Science (1987) [Pubmed]
  6. Guanine nucleotide-binding proteins in bipolar affective disorder. Effects of long-term lithium treatment. Manji, H.K., Chen, G., Shimon, H., Hsiao, J.K., Potter, W.Z., Belmaker, R.H. Arch. Gen. Psychiatry (1995) [Pubmed]
  7. Platelet alpha 2-adrenergic receptor binding and plasma catecholamines. Before and during imipramine treatment in patients with panic anxiety. Cameron, O.G., Smith, C.B., Hollingsworth, P.J., Nesse, R.M., Curtis, G.C. Arch. Gen. Psychiatry (1984) [Pubmed]
  8. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Uzumaki, H., Okabe, T., Sasaki, N., Hagiwara, K., Takaku, F., Tobita, M., Yasukawa, K., Ito, S., Umezawa, Y. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  9. Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. Yip, C.M., Elton, E.A., Darabie, A.A., Morrison, M.R., McLaurin, J. J. Mol. Biol. (2001) [Pubmed]
  10. Platelet adenylate cyclase and phospholipase C activity in posttraumatic stress disorder. Lerer, B., Bleich, A., Bennett, E.R., Ebstein, R.P., Balkin, J. Biol. Psychiatry (1990) [Pubmed]
  11. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Porcelli, S.A., Modlin, R.L. Annu. Rev. Immunol. (1999) [Pubmed]
  12. BCL-2 family: regulators of cell death. Chao, D.T., Korsmeyer, S.J. Annu. Rev. Immunol. (1998) [Pubmed]
  13. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Dustin, M.L., Springer, T.A. Annu. Rev. Immunol. (1991) [Pubmed]
  14. Cellular and molecular biology of the aquaporin water channels. Borgnia, M., Nielsen, S., Engel, A., Agre, P. Annu. Rev. Biochem. (1999) [Pubmed]
  15. Protein import into mitochondria. Neupert, W. Annu. Rev. Biochem. (1997) [Pubmed]
  16. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Sixma, T.K., Pronk, S.E., Kalk, K.H., van Zanten, B.A., Berghuis, A.M., Hol, W.G. Nature (1992) [Pubmed]
  17. Erythrocyte lipids in heterozygous carriers of duchenne muscular dystrophy. Howland, J.L., Iyer, S.L. Science (1977) [Pubmed]
  18. Phosphatidyl choline is recognized by a series of Ly-1+ murine B cell lymphomas specific for erythrocyte membranes. Mercolino, T.J., Arnold, L.W., Haughton, G. J. Exp. Med. (1986) [Pubmed]
  19. NADPH-binding component of the respiratory burst oxidase system: studies using neutrophil membranes from patients with chronic granulomatous disease lacking the beta-subunit of cytochrome b558. Tsunawaki, S., Mizunari, H., Namiki, H., Kuratsuji, T. J. Exp. Med. (1994) [Pubmed]
  20. Alterations in the structure, physicochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. Myers, B.M., Prendergast, F.G., Holman, R., Kuntz, S.M., LaRusso, N.F. J. Clin. Invest. (1991) [Pubmed]
  21. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Wang, S., Yue, H., Derin, R.B., Guggino, W.B., Li, M. Cell (2000) [Pubmed]
  22. Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Hanover, J.A., Willingham, M.C., Pastan, I. Cell (1984) [Pubmed]
  23. GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Ríos, R.M., Sanchís, A., Tassin, A.M., Fedriani, C., Bornens, M. Cell (2004) [Pubmed]
  24. The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner. Edwardson, J.M., An, S., Jahn, R. Cell (1997) [Pubmed]
  25. Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Takizawa, P.A., Yucel, J.K., Veit, B., Faulkner, D.J., Deerinck, T., Soto, G., Ellisman, M., Malhotra, V. Cell (1993) [Pubmed]
  26. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Williamson, P., Bateman, J., Kozarsky, K., Mattocks, K., Hermanowicz, N., Choe, H.R., Schlegel, R.A. Cell (1982) [Pubmed]
  27. The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion. Latterich, M., Schekman, R. Cell (1994) [Pubmed]
  28. Inhibition of glucose transport into rat islet cells by immunoglobulins from patients with new-onset insulin-dependent diabetes mellitus. Johnson, J.H., Crider, B.P., McCorkle, K., Alford, M., Unger, R.H. N. Engl. J. Med. (1990) [Pubmed]
  29. Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Patel, S.K., Indig, F.E., Olivieri, N., Levine, N.D., Latterich, M. Cell (1998) [Pubmed]
  30. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Schultheis, P.J., Clarke, L.L., Meneton, P., Miller, M.L., Soleimani, M., Gawenis, L.R., Riddle, T.M., Duffy, J.J., Doetschman, T., Wang, T., Giebisch, G., Aronson, P.S., Lorenz, J.N., Shull, G.E. Nat. Genet. (1998) [Pubmed]
  31. Signal transduction from the endoplasmic reticulum to the cell nucleus. Pahl, H.L. Physiol. Rev. (1999) [Pubmed]
  32. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Kunzelmann, K., Mall, M. Physiol. Rev. (2002) [Pubmed]
  33. Control of acetylcholine receptors in skeletal muscle. Fambrough, D.M. Physiol. Rev. (1979) [Pubmed]
  34. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Herzig, S., Neumann, J. Physiol. Rev. (2000) [Pubmed]
  35. Differences in platelet enzyme activity between alcoholics and nonalcoholics. Tabakoff, B., Hoffman, P.L., Lee, J.M., Saito, T., Willard, B., De Leon-Jones, F. N. Engl. J. Med. (1988) [Pubmed]
  36. Phospholipase D: enzymology, mechanisms of regulation, and function. Exton, J.H. Physiol. Rev. (1997) [Pubmed]
  37. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., Frohman, M.A., Kanaho, Y. Cell (1999) [Pubmed]
  38. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Lee, M.C., Orci, L., Hamamoto, S., Futai, E., Ravazzola, M., Schekman, R. Cell (2005) [Pubmed]
  39. Red-cell-membrane polypeptide aggregates in glucose-6-phosphate dehydrogenase mutants with chronic hemolytic disease. A clue to the mechanism of hemolysis. Johnson, G.J., Allen, D.W., Cadman, S., Fairbanks, V.F., White, J.G., Lampkin, B.C., Kaplan, M.E. N. Engl. J. Med. (1979) [Pubmed]
  40. Induction of labor compared with expectant management for prelabor rupture of the membranes at term. TERMPROM Study Group. Hannah, M.E., Ohlsson, A., Farine, D., Hewson, S.A., Hodnett, E.D., Myhr, T.L., Wang, E.E., Weston, J.A., Willan, A.R. N. Engl. J. Med. (1996) [Pubmed]
  41. Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K. Nature (2003) [Pubmed]
  42. Reconstitution of Rh (D) antigen activity from human erythrocyte membranes solubilized by deoxycholate. Lorusso, D.J., Green, F.A. Science (1975) [Pubmed]
  43. Opsin structure probed by raman spectroscopy of photoreceptor membranes. Rothschild, K.J., Andrew, J.R., De Grip, W.J., Stanley, H.E. Science (1976) [Pubmed]
 
WikiGenes - Universities