The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nucleophosmin C-terminal leukemia-associated domain interacts with G-rich quadruplex forming DNA.

Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling phosphoprotein, mainly localized at nucleoli, that plays a key role in ribogenesis, centrosome duplication, and response to stress stimuli. Mutations at the C-terminal domain of NPM1 are the most frequent genetic lesion in acute myeloid leukemia and cause the aberrant and stable translocation of the protein in the cytoplasm. The NPM1 C-terminal domain was previously shown to bind nucleic acids. Here we further investigate the DNA binding properties of the NPM1 C-terminal domain both at the protein and nucleic acid levels; we investigate the domain boundaries and identify key residues for high affinity recognition. Furthermore, we demonstrate that the NPM1 C-terminal domain has a preference for G-quadruplex forming DNA regions and induces the formation of G-quadruplex structures in vitro. Finally we show that a specific sequence found at the SOD2 gene promoter, which was previously shown to be a target of NPM1 in vivo, is indeed folded as a G-quadruplex in vitro under physiological conditions. Our data extend considerably present knowledge on the DNA binding properties of NPM1 and suggest a general role in the transcription of genes characterized by the presence of G-quadruplex forming regions at their promoters.[1]

References

  1. Nucleophosmin C-terminal leukemia-associated domain interacts with G-rich quadruplex forming DNA. Federici, L., Arcovito, A., Scaglione, G.L., Scaloni, F., Lo Sterzo, C., Di Matteo, A., Falini, B., Giardina, B., Brunori, M. J. Biol. Chem. (2010) [Pubmed]
 
WikiGenes - Universities