The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Centrosome


High impact information on Centrosome

  • This genome-wide search identified two proteins, Bqt1 and Bqt2, that connect telomeres to the spindle-pole body (SPB; the centrosome equivalent in fungi) [6].
  • The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression [7].
  • Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly [8].
  • This interaction results in colocalization of UBE2N with STK15 at the centrosomes during mitosis [9].
  • We propose that dynein and ZYG-12 move the centrosomes toward the nucleus, followed by a ZYG-12/SUN-1-dependent anchorage [10].

Chemical compound and disease context of Centrosome


Biological context of Centrosome


Anatomical context of Centrosome


Associations of Centrosome with chemical compounds


Gene context of Centrosome

  • The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo [26].
  • Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites [7].
  • We find that the CDC27Hs and CDC16Hs proteins colocalize to the centrosome at all stages of the mammalian cell cycle, and to the mitotic spindle [27].
  • Cyclin-E-expressing cells that exhibit CIN have normal centrosome numbers [28].
  • Purified centrosomes also contain Skp1, and Cul1 modified by the ubiquitin-like molecule NEDD8, suggesting a role for NEDD8 in targeting [29].

Analytical, diagnostic and therapeutic context of Centrosome


  1. Mutations in dynamin 2 cause dominant centronuclear myopathy. Bitoun, M., Maugenre, S., Jeannet, P.Y., Lacène, E., Ferrer, X., Laforêt, P., Martin, J.J., Laporte, J., Lochmüller, H., Beggs, A.H., Fardeau, M., Eymard, B., Romero, N.B., Guicheney, P. Nat. Genet. (2005) [Pubmed]
  2. Centrosome amplification drives chromosomal instability in breast tumor development. Lingle, W.L., Barrett, S.L., Negron, V.C., D'Assoro, A.B., Boeneman, K., Liu, W., Whitehead, C.M., Reynolds, C., Salisbury, J.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  3. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Duensing, S., Lee, L.Y., Duensing, A., Basile, J., Piboonniyom, S., Gonzalez, S., Crum, C.P., Munger, K. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  4. BRCA1 is associated with the centrosome during mitosis. Hsu, L.C., White, R.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. Pin1 regulates centrosome duplication, and its overexpression induces centrosome amplification, chromosome instability, and oncogenesis. Suizu, F., Ryo, A., Wulf, G., Lim, J., Lu, K.P. Mol. Cell. Biol. (2006) [Pubmed]
  6. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Chikashige, Y., Tsutsumi, C., Yamane, M., Okamasa, K., Haraguchi, T., Hiraoka, Y. Cell (2006) [Pubmed]
  7. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Kim, J.C., Badano, J.L., Sibold, S., Esmail, M.A., Hill, J., Hoskins, B.E., Leitch, C.C., Venner, K., Ansley, S.J., Ross, A.J., Leroux, M.R., Katsanis, N., Beales, P.L. Nat. Genet. (2004) [Pubmed]
  8. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Rosenblatt, J., Cramer, L.P., Baum, B., McGee, K.M. Cell (2004) [Pubmed]
  9. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Ewart-Toland, A., Briassouli, P., de Koning, J.P., Mao, J.H., Yuan, J., Chan, F., MacCarthy-Morrogh, L., Ponder, B.A., Nagase, H., Burn, J., Ball, S., Almeida, M., Linardopoulos, S., Balmain, A. Nat. Genet. (2003) [Pubmed]
  10. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Malone, C.J., Misner, L., Le Bot, N., Tsai, M.C., Campbell, J.M., Ahringer, J., White, J.G. Cell (2003) [Pubmed]
  11. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Gritsko, T.M., Coppola, D., Paciga, J.E., Yang, L., Sun, M., Shelley, S.A., Fiorica, J.V., Nicosia, S.V., Cheng, J.Q. Clin. Cancer Res. (2003) [Pubmed]
  12. Centrosome-, chromosomal-passenger- and cell-cycle-associated mRNAs are differentially regulated in the development of sporadic colorectal cancer. Gerlach, U., Kayser, G., Walch, A., Hopt, U., Schulte-Mönting, J., Werner, M., Lassmann, S. J. Pathol. (2006) [Pubmed]
  13. Induction of centrosome and chromosome aberrations by imatinib in vitro. Fabarius, A., Giehl, M., Frank, O., Duesberg, P., Hochhaus, A., Hehlmann, R., Seifarth, W. Leukemia (2005) [Pubmed]
  14. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Riabowol, K., Draetta, G., Brizuela, L., Vandre, D., Beach, D. Cell (1989) [Pubmed]
  15. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Okuda, M., Horn, H.F., Tarapore, P., Tokuyama, Y., Smulian, A.G., Chan, P.K., Knudsen, E.S., Hofmann, I.A., Snyder, J.D., Bove, K.E., Fukasawa, K. Cell (2000) [Pubmed]
  16. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Zhou, H., Kuang, J., Zhong, L., Kuo, W.L., Gray, J.W., Sahin, A., Brinkley, B.R., Sen, S. Nat. Genet. (1998) [Pubmed]
  17. The mouse Mps1p-like kinase regulates centrosome duplication. Fisk, H.A., Winey, M. Cell (2001) [Pubmed]
  18. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Doxsey, S.J., Stein, P., Evans, L., Calarco, P.D., Kirschner, M. Cell (1994) [Pubmed]
  19. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Zheng, Y., Jung, M.K., Oakley, B.R. Cell (1991) [Pubmed]
  20. Cyclic-AMP-dependent protein kinase type II is associated with the Golgi complex and with centrosomes. Nigg, E.A., Schäfer, G., Hilz, H., Eppenberger, H.M. Cell (1985) [Pubmed]
  21. Abnormal centrosome amplification in the absence of p53. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., Vande Woude, G.F. Science (1996) [Pubmed]
  22. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. do Carmo Avides, M., Glover, D.M. Science (1999) [Pubmed]
  23. Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Wang, W., Budhu, A., Forgues, M., Wang, X.W. Nat. Cell Biol. (2005) [Pubmed]
  24. Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo. Goldstein, B. J. Cell Biol. (1995) [Pubmed]
  25. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., Brinkley, B.R. J. Cell Biol. (1995) [Pubmed]
  26. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. O'Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., White, J.G. Cell (2001) [Pubmed]
  27. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Tugendreich, S., Tomkiel, J., Earnshaw, W., Hieter, P. Cell (1995) [Pubmed]
  28. Deregulated cyclin E induces chromosome instability. Spruck, C.H., Won, K.A., Reed, S.I. Nature (1999) [Pubmed]
  29. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Freed, E., Lacey, K.R., Huie, P., Lyapina, S.A., Deshaies, R.J., Stearns, T., Jackson, P.K. Genes Dev. (1999) [Pubmed]
  30. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. D'Souza-Schorey, C., van Donselaar, E., Hsu, V.W., Yang, C., Stahl, P.D., Peters, P.J. J. Cell Biol. (1998) [Pubmed]
  31. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. Fry, A.M., Mayor, T., Meraldi, P., Stierhof, Y.D., Tanaka, K., Nigg, E.A. J. Cell Biol. (1998) [Pubmed]
WikiGenes - Universities