The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Differential recognition of core and terminal portions of oligosaccharide ligands by carbohydrate-recognition domains of two mannose-binding proteins.

Two different mannose-binding proteins (MBP-A and MBP-C), which show 56% sequence identity, are present in rat serum and liver. It has previously been shown that MBP-A binds to a range of monosaccharide-bovine serum albumin conjugates, and that, among oligosaccharide ligands tested, preferential binding is to terminal nonreducing N-acetylglucosamine residues of complex type N-linked oligosaccharides. In order to compare the binding specificity of MBP-C, an expression system has been developed for production of a fragment of this protein which contains the COOH-terminal carbohydrate-recognition domain. After radioiodination, the domain has been used to probe natural glycoproteins, neoglycoproteins, and neoglycolipids. Like MBP-A, MBP-C binds several different monosaccharides conjugated to bovine serum albumin, including mannose, fucose, and N-acetylglucosamine, although binding to the last of these is relatively weaker than observed for MBP-A. The results of binding to natural glycoproteins and to neoglycolipids containing oligosaccharides derived from these proteins are most compatible with the interpretation that MBP-C interacts primarily with the trimannosyl core of complex N-linked oligosaccharides, with additional ligands being terminal fucose and perhaps also peripheral mannose residues of high mannose type oligosaccharides. This binding specificity is thus quite distinct from that of MBP-A. The presence of multiple MBPs with distinct binding specificities in preparations derived from serum and liver explains conflicting conclusions which have been reached about carbohydrate recognition by these proteins.[1]


WikiGenes - Universities