The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability.

Chlorophyll apoprotein accumulation in higher plant chloroplasts is controlled by light-dependent chlorophyll formation. Dark-grown plants lack chlorophyll and chlorophyll apoproteins. However, the plastid genes encoding the chlorophyll apoproteins are transcribed; chlorophyll apoprotein mRNA accumulates and associates with polysomes in plastids of dark-grown plants. Pulse-labeling assays revealed a population of short-lived proteins in plastids of dark-grown plants. One of these transiently labeled proteins was CP43, a chlorophyll apoprotein associated with photosystem II. Pulse-chase assays showed that newly synthesized CP43 was rapidly degraded in plastids of dark-grown plants, which lack chlorophyll. In contrast, CP43 synthesized in plastids from illuminated plants was stable. The synthesis of D1, a chlorophyll apoprotein of the photosystem II reaction center, was also analyzed in plastids of dark-grown and illuminated plants. Radiolabel accumulation into full-length D1 was only detected in plastids of illuminated plants. However, D1 translation intermediates of 15-25 kDa were detected in both plastid populations. Pulse-chase assays showed that the 15- to 25-kDa D1 translation products were precursors of mature D1 in plastids of illuminated plants. In contrast, in plastids of dark-grown plants, the 15- to 25-kDa translation intermediates were converted into a 23-kDa polypeptide previously suggested to be a proteolytic product of D1. These results indicate that chlorophyll produced in illuminated plants stabilizes D1 nascent polypeptides, which allows accumulation of mature D1.[1]

References

 
WikiGenes - Universities