The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. Evidence that increased intracellular Ca2+ is coupled to Na+ entry and increased intracellular pH.

The egg peptide speract increases intracellular pH (pHi) and cyclic nucleotides in sperm of the sea urchin Strongylocentrotus purpuratus by a mechanism dependent on seawater Na+ but not Ca2+ (Hansbrough, J. R., and Garbers, D. L. (1981) J. Biol. Chem. 256, 2235-2241; Repaske, D. R., and Garbers, D. L. (1983) J. Biol. Chem. 258, 6025-6029). Using the Ca2+ indicators quin2 and indo-1, we show that speract stimulates a transient rise in intracellular [Ca2+] ([a2+]i) when millimolar Ca2+ is present in seawater. The rise is increased and extended by the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), which also enhances 22Na+ uptake with or without Ca2+. Without MIX, speract initiates a rise in [Ca2+]i that peaks within approximately 5 s and decreases with a t1/2 of approximately 9 s. Activation of Na+:H+ exchange without speract by either Na+ addition to sperm in Na+-free seawater (NaFASW) or by monensin also increases [Ca2+]i, but neither change is transient. Inhibition of Na+:H+ exchange by increased seawater [K+] prevents the rise in [Ca2+]i initiated by either speract or Na+ addition to sperm in NaFASW. Increasing pHi by adding 10 mM NH4+ or by addition of Li+ to sperm in NaFASW does not increase [Ca2+]i. The data suggest that speract binding leads to rapid activation of Na+:H+ exchange; and, as a consequence, [Ca2+] entry increases transiently through either Na+:Ca2+ exchange or else through a verapamil-insensitive Ca2+ channel. MIX prevents the inactivation of this entry mechanism.[1]

References

 
WikiGenes - Universities