Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors.
Vertebrate rod and cone photoreceptors hyperpolarize when illuminated. However, synaptic input from horizontal cells can depolarize cones and even elicit action potentials. Using the whole-cell tight-seal recording technique, we determined that, in solitary cones isolated from a lizard retina, action potentials can be generated by depolarizing current steps under conditions where only two ionic currents are activated. A dihydropyridine-sensitive, inward Ca2+ current that activates at potentials positive to -40 mV can regeneratively depolarize the cell. Subsequently, a SITS-sensitive, Ca2(+)-dependent outward Cl- current repolarizes the cell. We suggest that these ionic currents may help explain lateral inhibition in the retina.[1]References
- Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Maricq, A.V., Korenbrot, J.I. Neuron (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg