The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with acetic anhydride: substrate-induced conformational changes.

In order to identify regions that are sensitive to substrate-induced perturbations, the catalytic subunit of cAMP-dependent protein kinase was differentially labeled with [3H]acetic anhydride. Treatment of the catalytic subunit with acetic anhydride in the absence of substrates led to the irreversible inhibition of activity, and MgATP protected against inactivation. After development of a purification protocol for the lysine-containing peptides, the reactivity of each lysine in the native enzyme was calculated. The reactivity profile of lysines in the apoenzyme revealed three distinct regions. In general, the lysines within the amino-terminal segment (residues 1-83) and the carboxy-terminal segment (192-345) were relatively reactive. In contrast, the five lysines in the middle of the protein (Lys-92, -105, -111, -168, and -189) were very unreactive, indicating that these groups are sequestered from the aqueous solvent. The reactivity of each lysine was then determined in the presence of MgATP and in the presence of MgATP and a 20-residue inhibitor peptide. Most of the substrate-induced changes in lysine reactivity were localized in the amino-terminal segment, while the reactivities of lysines in the carboxy-terminal region were not altered significantly by MgATP or inhibitor peptide. MgATP affords substantial protection to three residues in particular. Lys-72, predicted previously to be essential for nucleotide binding was relatively reactive in the apoenzyme, whereas labeling was nearly abolished in the presence of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

 
WikiGenes - Universities