Thermodynamics of protein-RNA recognition in a highly conserved region of the large-subunit ribosomal RNA.
Ribosomal protein L11 from Escherichia coli specifically binds to a highly conserved region of 23S ribosomal RNA. The thermodynamics of forming a complex between this protein and several different rRNA fragments have been investigated, by use of a nitrocellulose filter binding assay. A 57-nucleotide region of the RNA (C1052-U1108) contains all the protein recognition features, and an RNA fragment containing this region binds L11 10(3)-10(4)-fold more tightly than tRNA. Binding constants are on the order of 10 microM-1 and are only weakly dependent on K+ concentration (delta log K/delta log [K+] = -1.4) or temperature. Binding requires multivalent cations; Mg2+ is taken up into the complex with an affinity of approximately 3 mM-1. Other multivalent cations tested, Ca2+ and Co(NH3)63+, promote binding nearly as well. The pH dependence of binding is a bell-shaped curve with a maximum near neutral pH, but the entire curve is shifted to higher pH for the smaller of two RNA fragments tested. This result suggests that the smaller fragment favors a conformation stabilizing protonated forms of the RNA recognition site and is potentially relevant to a hypothesis that this rRNA region undergoes an ordered series of conformational changes during the ribosome cycle.[1]References
- Thermodynamics of protein-RNA recognition in a highly conserved region of the large-subunit ribosomal RNA. Ryan, P.C., Draper, D.E. Biochemistry (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg