Assembly of microtubules from nucleotide-depleted tubulin.
In vitro assembly of microtubules from tubulin is considered to have an absolute requirement for added GTP (or a non-hydrolysable GTP-analogue) involving binding at the E(exchangeable)-site located on the beta-subunit of the tubulin dimer. By contrast, GDP inhibits assembly. Nucleotide hydrolysis has been implicated in the dynamic properties of microtubules, treadmilling and mechanical coupling. Here we demonstrate that assembly is not necessarily dependent on the presence of GTP at the E-site; microtubules can be formed efficiently in the absence of GTP in the presence of pyrophosphate. These microtubules, which have normal morphology and lability at cold temperatures, contain N(non-exchangeable)-site GTP and a significant proportion of E-site GDP. This demonstrates the possibility of direct incorporation of GDP-containing tubulin dimer during assembly which probably derives from microtubule-associated protein (MAP)-containing oligomers. This finding has important implications for the mechanism of microtubule elongation. The effects of pyrophosphate suggest that charge neutralization by the bidentate ligand is an essential step in promoting microtubule assembly, and that this interaction involves only a minimal conformational change in the protein.[1]References
- Assembly of microtubules from nucleotide-depleted tubulin. Bayley, P.M., Manser, E.J. Nature (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg