Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins).
Mastoparan, a peptide toxin from wasp venom, is a nonspecific secretagogue. We show here that mastoparan increases the GTPase activity and the rate of nucleotide binding of several purified GTP-binding regulatory proteins (G proteins) whose function is to couple cell-surface receptors to intracellular mediators. Mastoparan accelerated guanosine-5'-(3-O-thiotriphosphate binding and consequent G protein activation in part by promoting the dissociation of bound GDP, the mechanism by which receptors regulate G proteins. ADP-ribosylation by pertussis toxin, which uncouples receptors from G proteins, selectively inhibited mastoparan-stimulated activation. Like receptors, mastoparan was more potent if the G protein was reconstituted in phospholipid vesicles and was active at micromolar concentrations of Mg2+. The structure of mastoparan in a lipid bilayer is similar to that predicted for a cationic intracellular loop of G protein-coupled receptors. Mastoparan thus displays a novel mode of toxicity by acting directly on G proteins to mimic the role normally played by agonist-liganded receptors.[1]References
- Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). Higashijima, T., Uzu, S., Nakajima, T., Ross, E.M. J. Biol. Chem. (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg