The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rat liver aryl sulfotransferase-catalyzed sulfation and rearrangement of 9-fluorenone oxime.

The role of hepatic cytosolic aryl sulfotransferase (3'-phosphoadenylylsulfate:phenol sulfotransferase, EC 2.8.2.1) in the enzymic rearrangement of 9-fluorenone oxime to phenanthridone was investigated. 9-Fluorenone oxime was found to be an excellent substrate for a partially purified rat liver aryl sulfotransferase preparation. This compound was in fact superior to 2-naphthol, the standard assay substrate. This is the first reported observation of aryl oxime sulfation by the aryl sulfotransferases. 9-Fluorenone oxime sulfation exhibited pronounced substrate inhibition at high substrate concentrations. However, despite virtually complete conversion of 9-fluorenone oxime to the corresponding N-O-sulfate conjugate in enzyme incubation mixtures, only small amounts of rearrangement product were detected after long-term incubations. In addition, 9-fluorenone oxime-O-sulfonic acid was chemically synthesized and tested for stability. The results showed that rearrangement was pH-dependent and occurred slowly over several hours. It is therefore concluded that aryl sulfotransferase-catalyzed sulfation likely plays an important role in the in vitro and in vivo disposition of 9-fluorenone oxime. Moreover, sulfation facilitates the Beckmann-like conversion of 9-fluorenone oxime to phenanthridone. Sulfation alone, however, appears insufficient to account for all of the previously reported in vitro and in vivo rearrangement.[1]

References

  1. Rat liver aryl sulfotransferase-catalyzed sulfation and rearrangement of 9-fluorenone oxime. Mangold, J.B., Mangold, B.L., Spina, A. Biochim. Biophys. Acta (1986) [Pubmed]
 
WikiGenes - Universities