The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences.

The relationship between debrisoquine metabolic phenotype and the pharmacokinetics and pharmacodynamics of propafenone was studied in 28 patients with chronic ventricular arrhythmias (22 extensive metabolizers [EMs] and six poor metabolizers [PMs] of debrisoquine). EMs were characterized by a shorter propafenone elimination half-life (5.5 +/- 2.1 vs 17.2 +/- 8.0, p less than .001), lower average plasma concentration (Cp) (1.1 +/- 0.6 vs 2.5 +/- 0.5 ng/ml/mg daily dosage, p less than .001), and higher oral clearance (1115 +/- 1238 vs 264 +/- 48 ml/min, p less than .001). The active metabolite 5-hydroxypropafenone, assayed in 12 patients, was identified in nine of 10 EMs but in neither of the PMs. A lower incidence of central nervous system side effects was noted in EMs (14% vs 67%, p less than .01). The magnitude of QRS widening at any given propafenone Cp was greater in EMs than PMs. There was no significant difference between EMs and PMs in effective propafenone dose or frequency of antiarrhythmic response. Inhibition of debrisoquine 4-hydroxylation by propafenone was demonstrated both in vivo and in a human liver microsomal system in vitro. We conclude that propafenone is metabolized via the same cytochrome P-450 responsible for debrisoquine's 4-hydroxylation, and that its pharmacokinetics and concentration-response relationships and the incidence of central nervous system side effects are different in patients of different debrisoquine metabolic phenotype.[1]

References

  1. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Siddoway, L.A., Thompson, K.A., McAllister, C.B., Wang, T., Wilkinson, G.R., Roden, D.M., Woosley, R.L. Circulation (1987) [Pubmed]
 
WikiGenes - Universities