Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP.
Axoplasm extruded from the squid giant axon has been used to analyse the molecular mechanisms of intracellular vesicle transport. Using video-enhanced light microscopy, vesicle transport can be observed directly on individual microtubules at the edge of the axoplasm. Here we report that AMP-PNP (adenyl-5'-yl imidodiphosphate), a non-hydrolysable analogue of ATP, reversibly inhibited vesicle transport. Moreover, vesicles in solution attach to the microtubules and form relatively stable complexes. AMP-PNP may produce this effect by binding to an ATP-binding site on the transport machinery, thereby stabilizing the motility complex that is normally formed by a transported vesicle, an ATPase and a microtubule. The effects of AMP-PNP on the vesicle transport system indicate that the enzymatic machinery of this system differs significantly from that of the actomyosin system or the dynein-microtubule system.[1]References
- Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Lasek, R.J., Brady, S.T. Nature (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg