The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Transport Vesicles

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Transport Vesicles

 

Psychiatry related information on Transport Vesicles

 

High impact information on Transport Vesicles

 

Chemical compound and disease context of Transport Vesicles

 

Biological context of Transport Vesicles

  • The Rab family of low-molecular-mass GTP-binding proteins are thought to guide membrane fusion between a transport vesicle and the target membrane, and to determine the specificity of docking [13].
  • Inhibition was greater than or equal to 90% when the added cdc2 activity was in the range estimated for that in mitotic Xenopus eggs, which indicates that during mitosis the cdc2 kinase mediates an inhibition of endocytic vesicle fusion, and possibly other fusion events in membrane traffic [14].
  • All vesicle transport steps also have an essential requirement for a member of the Sec1 protein family, including the neuronal Munc18-1 (also known as nSec1) in regulated exocytosis [15].
  • Members of the kinesin superfamily of motor proteins are essential for mitotic and meiotic spindle organization, chromosome segregation, organelle and vesicle transport, and many other processes that require microtubule-based transport [16].
  • The Cdc42 GTPase binds to numerous effector proteins that control cell polarity, cytoskeletal remodelling and vesicle transport [17].
 

Anatomical context of Transport Vesicles

 

Associations of Transport Vesicles with chemical compounds

  • Interestingly, while the earliest steps in stack formation share some similarities with events catalyzing fusion of transport vesicles to its target membrane, neither GTP gamma S nor Rab-GDI, inhibitors of vesicular protein traffic, inhibit stack formation [23].
  • Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack [24].
  • To measure chloride transport, endocytic vesicles were labelled in vivo with a Cl(-)-sensitive fluorescent indicator6-8 [25].
  • SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER [26].
  • The effects of AMP-PNP on the vesicle transport system indicate that the enzymatic machinery of this system differs significantly from that of the actomyosin system or the dynein-microtubule system [27].
 

Gene context of Transport Vesicles

 

Analytical, diagnostic and therapeutic context of Transport Vesicles

References

  1. Valosin-containing protein, VCP, is a ubiquitous clathrin-binding protein. Pleasure, I.T., Black, M.M., Keen, J.H. Nature (1993) [Pubmed]
  2. Characterization of {gamma}-aminobutyric acid type A receptor-associated protein, a novel tumor suppressor, showing reduced expression in breast cancer. Klebig, C., Seitz, S., Arnold, W., Deutschmann, N., Pacyna-Gengelbach, M., Scherneck, S., Petersen, I. Cancer Res. (2005) [Pubmed]
  3. The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. Neufeld, E.B., Stonik, J.A., Demosky, S.J., Knapper, C.L., Combs, C.A., Cooney, A., Comly, M., Dwyer, N., Blanchette-Mackie, J., Remaley, A.T., Santamarina-Fojo, S., Brewer, H.B. J. Biol. Chem. (2004) [Pubmed]
  4. Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. Ningaraj, N.S., Rao, M., Hashizume, K., Asotra, K., Black, K.L. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
  5. Expression of an ADP-ribosylation factor like gene, ARF4L, is induced after transient forebrain ischemia in the gerbil. Katayama, T., Imaizumi, K., Tsuda, M., Mori, Y., Takagi, T., Tohyama, M. Brain Res. Mol. Brain Res. (1998) [Pubmed]
  6. Transferrin C2 and Alzheimer's disease: another piece of the puzzle found? Van Rensburg, S.J., Carstens, M.E., Potocnik, F.C., van der Spuy, G., van der Walt, B.J., Taljaard, J.J. Med. Hypotheses (1995) [Pubmed]
  7. Closing the GAP between Polarity and Vesicle Transport. Macara, I.G., Spang, A. Cell (2006) [Pubmed]
  8. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Díaz, E., Pfeffer, S.R. Cell (1998) [Pubmed]
  9. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Grindstaff, K.K., Yeaman, C., Anandasabapathy, N., Hsu, S.C., Rodriguez-Boulan, E., Scheller, R.H., Nelson, W.J. Cell (1998) [Pubmed]
  10. GRASP65, a protein involved in the stacking of Golgi cisternae. Barr, F.A., Puype, M., Vandekerckhove, J., Warren, G. Cell (1997) [Pubmed]
  11. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Hay, J.C., Chao, D.S., Kuo, C.S., Scheller, R.H. Cell (1997) [Pubmed]
  12. Sodium-dependent D-glucose transport after proximal small intestinal resection in rat. Freeman, H.J., Ellis, S.T., Johnston, G.A., Kwan, W.C., Quamme, G.A. Am. J. Physiol. (1988) [Pubmed]
  13. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Geppert, M., Goda, Y., Stevens, C.F., Südhof, T.C. Nature (1997) [Pubmed]
  14. Inhibition of endocytic vesicle fusion in vitro by the cell-cycle control protein kinase cdc2. Tuomikoski, T., Felix, M.A., Dorée, M., Gruenberg, J. Nature (1989) [Pubmed]
  15. Control of fusion pore dynamics during exocytosis by Munc18. Fisher, R.J., Pevsner, J., Burgoyne, R.D. Science (2001) [Pubmed]
  16. A marine natural product inhibitor of kinesin motors. Sakowicz, R., Berdelis, M.S., Ray, K., Blackburn, C.L., Hopmann, C., Faulkner, D.J., Goldstein, L.S. Science (1998) [Pubmed]
  17. Borg proteins control septin organization and are negatively regulated by Cdc42. Joberty, G., Perlungher, R.R., Sheffield, P.J., Kinoshita, M., Noda, M., Haystead, T., Macara, I.G. Nat. Cell Biol. (2001) [Pubmed]
  18. CLIP-170 links endocytic vesicles to microtubules. Pierre, P., Scheel, J., Rickard, J.E., Kreis, T.E. Cell (1992) [Pubmed]
  19. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Yamashiro, D.J., Tycko, B., Fluss, S.R., Maxfield, F.R. Cell (1984) [Pubmed]
  20. Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Straubinger, R.M., Hong, K., Friend, D.S., Papahadjopoulos, D. Cell (1983) [Pubmed]
  21. Topological restriction of SNARE-dependent membrane fusion. Parlati, F., McNew, J.A., Fukuda, R., Miller, R., Söllner, T.H., Rothman, J.E. Nature (2000) [Pubmed]
  22. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Wilson, D.W., Wilcox, C.A., Flynn, G.C., Chen, E., Kuang, W.J., Henzel, W.J., Block, M.R., Ullrich, A., Rothman, J.E. Nature (1989) [Pubmed]
  23. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Acharya, U., Jacobs, R., Peters, J.M., Watson, N., Farquhar, M.G., Malhotra, V. Cell (1995) [Pubmed]
  24. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Malhotra, V., Orci, L., Glick, B.S., Block, M.R., Rothman, J.E. Cell (1988) [Pubmed]
  25. Protein kinase A regulates chloride conductance in endocytic vesicles from proximal tubule. Bae, H.R., Verkman, A.S. Nature (1990) [Pubmed]
  26. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Barlowe, C., Schekman, R. Nature (1993) [Pubmed]
  27. Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Lasek, R.J., Brady, S.T. Nature (1985) [Pubmed]
  28. Bos1p, an integral membrane protein of the endoplasmic reticulum to Golgi transport vesicles, is required for their fusion competence. Lian, J.P., Ferro-Novick, S. Cell (1993) [Pubmed]
  29. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Eggenschwiler, J.T., Espinoza, E., Anderson, K.V. Nature (2001) [Pubmed]
  30. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Sato, M., Sato, K., Fonarev, P., Huang, C.J., Liou, W., Grant, B.D. Nat. Cell Biol. (2005) [Pubmed]
  31. Sec12p-dependent membrane binding of the small GTP-binding protein Sar1p promotes formation of transport vesicles from the ER. d'Enfert, C., Wuestehube, L.J., Lila, T., Schekman, R. J. Cell Biol. (1991) [Pubmed]
  32. Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. Espenshade, P., Gimeno, R.E., Holzmacher, E., Teung, P., Kaiser, C.A. J. Cell Biol. (1995) [Pubmed]
  33. Monoclonal antibodies against a glycoprotein localized in coated pits and endocytic vesicles inhibit alpha 2-macroglobulin binding and uptake. Hanover, J.A., D'Souza, P., August, T., Pastan, I., Willingham, M.C. J. Biol. Chem. (1986) [Pubmed]
  34. Characterization of Munc-18c and syntaxin-4 in 3T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT-4. Tellam, J.T., Macaulay, S.L., McIntosh, S., Hewish, D.R., Ward, C.W., James, D.E. J. Biol. Chem. (1997) [Pubmed]
  35. Activation induces dephosphorylation of cofilin and its translocation to plasma membranes in neutrophil-like differentiated HL-60 cells. Suzuki, K., Yamaguchi, T., Tanaka, T., Kawanishi, T., Nishimaki-Mogami, T., Yamamoto, K., Tsuji, T., Irimura, T., Hayakawa, T., Takahashi, A. J. Biol. Chem. (1995) [Pubmed]
  36. Immunoisolation and characterization of a subdomain of the endoplasmic reticulum that concentrates proteins involved in COPII vesicle biogenesis. Hobman, T.C., Zhao, B., Chan, H., Farquhar, M.G. Mol. Biol. Cell (1998) [Pubmed]
  37. Regulation of early endocytic vesicle motility and fission in a reconstituted system. Bananis, E., Murray, J.W., Stockert, R.J., Satir, P., Wolkoff, A.W. J. Cell. Sci. (2003) [Pubmed]
 
WikiGenes - Universities