The interaction of aliphatic analogs of methylene-dioxyphenyl compounds with cytochromes P-450 and P-420.
The spectra resulting from the interaction of a series of substituted dioxolanes with microsomal cytochromes P-450 or P-420, as well as purified cytochrome P-450, were measured. With the exception of dioxolane, 4-methyldioxolane and 4-ethyldioxolane, these compounds interacted with ferric cytochrome P-450 to give complexes exhibiting type I optical difference spectra, and, after incubation with NADPH, spectra with peaks at about 430 nm. These complexes, as well as those formed from dioxolanes in the presence of cumene hydroperoxide, inhibit the binding of CO to the cytochrome. Consideration of the known chemistry of dioxolanes, together with recent advances in the understanding of double Soret spectra, lead to a possible explanation for the differences between the spectra of dioxolanes and their aromatic analogs, the methylenedioxyphenyl compounds.[1]References
- The interaction of aliphatic analogs of methylene-dioxyphenyl compounds with cytochromes P-450 and P-420. Dahl, A.R., Hodgson, E. Chem. Biol. Interact. (1979) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg