The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Binding of monobactams to penicillin-binding proteins of Escherichia coli and Staphylococcus aureus: relation to antibacterial activity.

A series of novel monocyclic beta-lactam antibiotics having side chains related to penicillin, piperacillin, azlocillin, and cefotaxime were examined with respect to binding to essential penicillin-binding proteins (PBPs) in Escherichia coli and Staphylococcus aureus. In the penicillin series, there was poor binding to all essential PBPs of E. coli (greater than 100 micrograms/ml) but good binding to PBPs 1, 2, and 3 of S. aureus (approximately 1 microgram/ml). In the piperacillin and azlocillin series, there was good binding to PBP 3 of E. coli (0.1 microgram/ml) and PBPs 1, 2, and 3 of S. aureus (approximately 1 microgram/ml). In the cefotaxime series, there was generally good binding to PBP 3 of E. coli (0.1 micrograms/ml) but poor binding to PBPs 1, 2, and 3 of S. aureus (greater than or equal to 100 micrograms/ml). With a few exceptions in the cefotaxime series, antibacterial activity paralleled essential PBP binding. Binding studies with radioactively labeled compounds revealed no additional essential monobactam-binding proteins in the two organisms. The studies suggest that monobactams are intrinsically active against both gram-positive and gram-negative bacteria; the activity spectrum of a given monobactam is determined by the binding to essential PBPs, which in turn is determined by the nature of the substituents on the beta-lactam nucleus.[1]

References

  1. Binding of monobactams to penicillin-binding proteins of Escherichia coli and Staphylococcus aureus: relation to antibacterial activity. Georgopapadakou, N.H., Smith, S.A., Cimarusti, C.M., Sykes, R.B. Antimicrob. Agents Chemother. (1983) [Pubmed]
 
WikiGenes - Universities