The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens.

1,25-Dihydroxycholecalciferol D3 (1,25(OH)2D3), the active metabolite of vitamin D, is a potent inhibitor of breast cancer cell growth both in vivo and in vitro. We have shown that MCF-7 cells treated with 100 nM 1,25(OH)2D3 exhibit characteristic apoptotic morphology (pyknotic nuclei, chromatin and cytoplasmic condensation, nuclear matrix protein reorganization) within 48 h. In the experiments reported here, we examined the interactions between 1,25(OH)2D3 and the antiestrogen 4-hydroxytamoxifen ( TAM), which also induces apoptosis in MCF-7 cells. Our data suggest that TAM significantly potentiates the reduction in cell number induced by 1,25(OH)2D3 alone. Combined treatment with 1,25(OH)2D3 and TAM enhances the degree of apoptosis assessed using morphological markers that identify chromatin and nuclear matrix protein condensation. We have selected a subclone of MCF-7 cells resistant to 1,25(OH)2D3 (MCF-7D3Res). These cells express the vitamin D receptor and exhibit doubling times comparable to the parental MCF-7 cells, even when grown in 100 mM 1,25(OH)2D3. Treatment of both parental and resistant MCF-7 cells with TAM induces apoptosis and clusterin. These data emphasize that apoptosis can be induced in MCF-7 cells either by activation of vitamin-D-mediated signalling or disruption of estrogen-dependent signalling.[1]


WikiGenes - Universities