The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of human RPS14 transcription by intronic antisense RNAs and ribosomal protein S14.

RNase protection studies reveal two stable RNAs (250 and 280 nucleotides) transcribed from the antisense strand of the human ribosomal protein gene RPS14's first intron. These transcripts, designated alpha-250 and alpha-280, map to overlapping segments of the intron's 5' sequence. Neither RNA encodes a polypeptide sequence, and both are expressed in all human cells and tissues examined. Although alpha-280 is detected among both the cells' nuclear and cytoplasmic RNAs, the great majority of alpha-250 is found in the cytoplasmic subcellular compartment. As judged by its resistance to high concentrations of alpha-amanitin, cell-free transcription of alpha-250 and alpha-280 appears to involve RNA polymerase I. Tissue culture transfection and cell-free transcription experiments demonstrate that alpha-250 and alpha-280 stimulate S14 mRNA transcription, whereas free ribosomal protein S14 inhibits it. Electrophoretic mobility shift experiments indicate specific binary molecular interactions between r-protein S14, its message and the antisense RNAs. In light of these data, we propose a model for fine regulation of human RPS14 transcription that involves RPS14 intron 1 antisense RNAs as positive effectors and S14 protein as a negative effector.[1]


WikiGenes - Universities