The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds.

The chemistry of the fructosamine assay was studied by using the Amadori compound, N alpha-formyl-N epsilon-fructose-lysine (fFL), an analog of glycated lysine residues in protein. Previously (Clin Chem 1993;39:2460-5), we reported that free lysine was formed from fFL at 70% yield during incubation with alkaline nitroblue tetrazolium (NBT) under the conditions routinely used for the fructosamine assay (sodium carbonate buffer, pH 10.35 at 37 degrees C). Here, we show that D-glucosone is the primary carbohydrate oxidation product formed from Amadori compounds in the fructosamine assay. Glucosone, which decomposes under alkaline assay conditions with a half-life of < 30 min, reaches a maximum concentration of approximately 50% of the initial fFL concentration after 10 min of incubation. Like fFL, glucosone reduces NBT to the purple monoformazan dye, but its decomposition is not accelerated by the presence of NBT. The dicarbonyl-trapping reagent, aminoguanidine, inhibits the fructosamine assay by approximately 25% when fFL is the substrate, but by nearly 100% with glucosone as substrate. Studies with serum samples from diabetics and nondiabetics indicate that glucosone formation does not have a significant effect on the clinical usefulness of the fructosamine assay; however, corrections for glucosone formation may be required when the assay is used for estimating the extent of glycation of proteins.[1]

References

  1. Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds. Baker, J.R., Zyzak, D.V., Thorpe, S.R., Baynes, J.W. Clin. Chem. (1994) [Pubmed]
 
WikiGenes - Universities