The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription.

TFIIA is thought to play an important role in transcriptional regulation in higher eukaryotes, but its precise function is unclear. A human cDNA encoding a protein with 45% identity to the small subunit of yeast TFIIA has been isolated. TFIIA activity could be reconstituted by the mixing of recombinant large (alpha beta) and small (gamma) subunits. TFIIA-depleted HeLa nuclear extracts were used to demonstrate that TFIIA is essential for basal and activated transcription by several distinct classes of activators. Recombinant TFIIA functioned in transcriptional activation whether expressed as a dimer (alpha beta+gamma) or as a trimer (alpha+beta+gamma), which closely resembles the native form. Yeast TFIIA also functioned in transcriptional activation, and the human gamma subunit was functionally interchangeable with TOA2, its yeast homolog. Recombinant TFIIA mediated the stimulation of TFIID binding to the TATA region and downstream promoter sequences by the Zta transcriptional activator. Significantly, we found that TFIIA bound directly to Zta in an activation domain-dependent manner. One consequence of the TFIIA- mediated interaction between Zta and TFIID was the formation of a promoter-bound complex resistant to TATA oligonucleotide competition. These results demonstrate that TFIIA is an evolutionarily conserved general factor critical for activator-regulated transcription.[1]


  1. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Ozer, J., Moore, P.A., Bolden, A.H., Lee, A., Rosen, C.A., Lieberman, P.M. Genes Dev. (1994) [Pubmed]
WikiGenes - Universities