The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Role of cytochrome P4502D6 in the metabolism of brofaromine. A new selective MAO-A inhibitor.

The metabolic fate of brofaromine (CGP 11 305 A), a new, reversible, selective MAO-A inhibitor, has been assessed in poor (PM) and extensive (EM) metabolizers of debrisoquine. Compared to EM, PM had significantly longer t1/2 (136%) and larger AUC(0-infinity) (110%) of the parent compound brofaromine and a lower Cmax (69%) and AUC (0-72 h) (40%) of its O-desmethyl metabolite. The mean metabolite/substrate ratio (based on urine excretion) was about 6-times greater in EM than in PM. Treatment with quinidine converted all EM into phenocopies of PM. All pharmacokinetic parameters of brofaromine and O-desmethyl-brofaromine in EM treated with quinidine were similar to those of untreated PM, including the metabolite/substrate ratio. Quinidine treatment of PM did not alter the pharmacokinetics of brofaromine or of its metabolite, nor the metabolite/substrate ratio. The results indicate a role for the debrisoquine type of oxidation polymorphism in the O-demethylation and pharmacokinetics of brofaromine.[1]


  1. Role of cytochrome P4502D6 in the metabolism of brofaromine. A new selective MAO-A inhibitor. Feifel, N., Kucher, K., Fuchs, L., Jedrychowski, M., Schmidt, E., Antonin, K.H., Bieck, P.R., Gleiter, C.H. Eur. J. Clin. Pharmacol. (1993) [Pubmed]
WikiGenes - Universities