The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Recognition of the mRNA selenocysteine insertion sequence by the specialized translational elongation factor SELB.

In Escherichia coli the unusual amino acid selenocysteine is incorporated cotranslationally at an in-frame UGA codon. Incorporation of selenocysteine relies, in part, on the interaction between a specialized elongation factor, the SELB protein, and a cis-acting element within the mRNA. Boundary and toeprint experiments illustrate that the SELB-GTP-Sec-tRNA(Sec) ternary complex binds to the selenoprotein encoding mRNAs fdhF and fdnG, serving to increase the concentration of SELB and Sec-tRNA(Sec) on these mRNAs in vivo. Moreover, toeprint experiments indicate that SELB recognizes the ribosome-bound message and that, upon binding, SELB may protrude out of the ribosomal-mRNA track so as to approach the large ribosomal subunit. The results place the mRNA-bound SELB-GTP-Sec-tRNA(Sec) ternary complex at the selenocysteine codon (as expected) and suggest a mechanism to explain the specificity of selenocysteine insertion. Cis-acting mRNA regulatory elements can tether protein factors to the translation complex during protein synthesis.[1]

References

  1. Recognition of the mRNA selenocysteine insertion sequence by the specialized translational elongation factor SELB. Ringquist, S., Schneider, D., Gibson, T., Baron, C., Böck, A., Gold, L. Genes Dev. (1994) [Pubmed]
 
WikiGenes - Universities