The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water.

Heat-stable proteins from hyperthermophilic microorganisms are ideally suited for investigating protein stability and evolution. We measured with differential scanning calorimetry and optical absorption spectroscopy the thermal stability of [4Fe-4S] ferredoxin from Thermotoga maritima (tfdx), which is a small electron transfer protein. The results are consistent with two-state unfolding at the record denaturation temperature of 125 degrees C. According to the crystal structure at 1.75 A resolution, T. maritima ferredoxin contains a significantly increased number of hydrogen bonds that involve charged amino acid side-chains, compared to thermolabile ferredoxins. Thus, our results suggest that polar interactions substantially contribute to protein stability at very high temperatures. Moreover, because small [4Fe-4S] ferredoxins seem to have occurred early in evolution, the extreme thermostability of tfdx supports the hypothesis that life originated at high temperatures.[1]

References

  1. Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water. Pfeil, W., Gesierich, U., Kleemann, G.R., Sterner, R. J. Mol. Biol. (1997) [Pubmed]
 
WikiGenes - Universities