The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Thermotoga maritima

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Thermotoga maritima


High impact information on Thermotoga maritima


Chemical compound and disease context of Thermotoga maritima


Biological context of Thermotoga maritima


Gene context of Thermotoga maritima

  • 1H-, 13C- and 15N-NMR assignment of the conserved hypothetical protein TM0487 from Thermotoga maritima [20].
  • NMR structure determination of the hypothetical protein TM1290 from Thermotoga maritima using automated NOESY analysis [21].
  • The core structure has a nucleotide binding domain motif, which is structurally homologous with the N-terminal domain of the bacterial Thermotoga maritima PIMT [22].
  • An expressed sequence tag homologous to cheA was previously isolated by random sequencing of Thermotoga maritima cDNA clones (C. W. Kim, P. Markiewicz, J. J. Lee, C. F. Schierle, and J. H. Miller, J. Mol. Biol. 231: 960-981, 1993) [23].
  • The structure of two Thermotoga maritima proteins, a conserved hypothetical protein (TM0160) and a transcriptional regulator (TM1171), have now been determined at 1.9 A and 2.3 A resolution, respectively, as part of a large-scale structural genomics project [24].

Analytical, diagnostic and therapeutic context of Thermotoga maritima


  1. Crystal structure of the bacterial cell division inhibitor MinC. Cordell, S.C., Anderson, R.E., Löwe, J. EMBO J. (2001) [Pubmed]
  2. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. Rehaber, V., Jaenicke, R. J. Biol. Chem. (1992) [Pubmed]
  3. Lys13 plays a crucial role in the functional adaptation of the thermophilic triose-phosphate isomerase from Bacillus stearothermophilus to high temperatures. Alvarez, M., Wouters, J., Maes, D., Mainfroid, V., Rentier-Delrue, F., Wyns, L., Depiereux, E., Martial, J.A. J. Biol. Chem. (1999) [Pubmed]
  4. Isolation and characterization of a protein with high affinity for DNA: the glutamine synthetase of Thermus thermophilus 111. Mary, J., Révet, B. J. Mol. Biol. (1999) [Pubmed]
  5. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. Kreusch, A., Spraggon, G., Lee, C.C., Klock, H., McMullan, D., Ng, K., Shin, T., Vincent, J., Warner, I., Ericson, C., Lesley, S.A. J. Mol. Biol. (2003) [Pubmed]
  6. Microbiological evidence for Fe(III) reduction on early Earth. Vargas, M., Kashefi, K., Blunt-Harris, E.L., Lovley, D.R. Nature (1998) [Pubmed]
  7. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A., Liljas, A. Science (1999) [Pubmed]
  8. Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. Schurig, H., Beaucamp, N., Ostendorp, R., Jaenicke, R., Adler, E., Knowles, J.R. EMBO J. (1995) [Pubmed]
  9. (Beta alpha)8-barrel proteins of tryptophan biosynthesis in the hyperthermophile Thermotoga maritima. Sterner, R., Dahm, A., Darimont, B., Ivens, A., Liebl, W., Kirschner, K. EMBO J. (1995) [Pubmed]
  10. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Evans, J.C., Huddler, D.P., Hilgers, M.T., Romanchuk, G., Matthews, R.G., Ludwig, M.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  11. Nucleotide binding by the histidine kinase CheA. Bilwes, A.M., Quezada, C.M., Croal, L.R., Crane, B.R., Simon, M.I. Nat. Struct. Biol. (2001) [Pubmed]
  12. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Korolev, S., Ikeguchi, Y., Skarina, T., Beasley, S., Arrowsmith, C., Edwards, A., Joachimiak, A., Pegg, A.E., Savchenko, A. Nat. Struct. Biol. (2002) [Pubmed]
  13. The three-dimensional structure of invertase (beta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. Alberto, F., Bignon, C., Sulzenbacher, G., Henrissat, B., Czjzek, M. J. Biol. Chem. (2004) [Pubmed]
  14. The crystal structure of indoleglycerol-phosphate synthase from Thermotoga maritima. Kinetic stabilization by salt bridges. Knöchel, T., Pappenberger, A., Jansonius, J.N., Kirschner, K. J. Biol. Chem. (2002) [Pubmed]
  15. Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. Sandigursky, M., Franklin, W.A. J. Biol. Chem. (2000) [Pubmed]
  16. Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. Steen, I.H., Madern, D., Karlström, M., Lien, T., Ladenstein, R., Birkeland, N.K. J. Biol. Chem. (2001) [Pubmed]
  17. A novel tryptophan synthase beta-subunit from the hyperthermophile Thermotoga maritima. Quaternary structure, steady-state kinetics, and putative physiological role. Hettwer, S., Sterner, R. J. Biol. Chem. (2002) [Pubmed]
  18. Studies of the hyperthermophile Thermotoga maritima by random sequencing of cDNA and genomic libraries. Identification and sequencing of the trpEG (D) operon. Kim, C.W., Markiewicz, P., Lee, J.J., Schierle, C.F., Miller, J.H. J. Mol. Biol. (1993) [Pubmed]
  19. Substrate specificities and expression patterns reflect the evolutionary divergence of maltose ABC transporters in Thermotoga maritima. Nanavati, D.M., Nguyen, T.N., Noll, K.M. J. Bacteriol. (2005) [Pubmed]
  20. 1H-, 13C- and 15N-NMR assignment of the conserved hypothetical protein TM0487 from Thermotoga maritima. Almeida, M.S., Peti, W., Wüthrich, K. J. Biomol. NMR (2004) [Pubmed]
  21. NMR structure determination of the hypothetical protein TM1290 from Thermotoga maritima using automated NOESY analysis. Etezady-Esfarjani, T., Herrmann, T., Peti, W., Klock, H.E., Lesley, S.A., Wüthrich, K. J. Biomol. NMR (2004) [Pubmed]
  22. Crystal structure of human L-isoaspartyl-O-methyl-transferase with S-adenosyl homocysteine at 1.6-A resolution and modeling of an isoaspartyl-containing peptide at the active site. Smith, C.D., Carson, M., Friedman, A.M., Skinner, M.M., Delucas, L., Chantalat, L., Weise, L., Shirasawa, T., Chattopadhyay, D. Protein Sci. (2002) [Pubmed]
  23. Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima. Swanson, R.V., Sanna, M.G., Simon, M.I. J. Bacteriol. (1996) [Pubmed]
  24. On the use of DXMS to produce more crystallizable proteins: structures of the T. maritima proteins TM0160 and TM1171. Spraggon, G., Pantazatos, D., Klock, H.E., Wilson, I.A., Woods, V.L., Lesley, S.A. Protein Sci. (2004) [Pubmed]
  25. Thermodynamic study of phosphoglycerate kinase from Thermotoga maritima and its isolated domains: reversible thermal unfolding monitored by differential scanning calorimetry and circular dichroism spectroscopy. Zaiss, K., Jaenicke, R. Biochemistry (1999) [Pubmed]
  26. Defining amino acid residues involved in DNA-protein interactions and revelation of 3'-exonuclease activity in endonuclease V. Feng, H., Dong, L., Klutz, A.M., Aghaebrahim, N., Cao, W. Biochemistry (2005) [Pubmed]
  27. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase. Beaucamp, N., Hofmann, A., Kellerer, B., Jaenicke, R. Protein Sci. (1997) [Pubmed]
  28. Crystallization of butyrate kinase 2 from Thermotoga maritima mediated by vapor diffusion of acetic acid. Diao, J., Cooper, D.R., Sanders, D.A., Hasson, M.S. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  29. A model of the quaternary structure of enolases, based on structural and evolutionary analysis of the octameric enolase from Bacillus subtilis. Brown, C.K., Kuhlman, P.L., Mattingly, S., Slates, K., Calie, P.J., Farrar, W.W. J. Protein Chem. (1998) [Pubmed]
WikiGenes - Universities