The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha.

In extracts of human cells, base-base mismatches and small insertion/deletion loops are bound primarily by hMutSalpha, a heterodimer of hMSH2 and hMSH6 (also known as GTBP or p160). Recombinant hMutSalpha bound a G/T mismatch-containing oligonucleotide with an apparent dissociation constant Kd = 2.6 nM, while its affinity for a homoduplex substrate was >20-fold lower. In the presence of ATP, hMutSalpha dissociated from mismatched oligonucleotide substrates, and this reaction was attenuated by mutating the conserved lysine in the ATP-binding domains of hMSH6, hMSH2 or both to arginine. Surprisingly, this reaction required only ATP binding, not hydrolysis. The ATPase activity of hMutSalpha variants carrying the Lys-->Arg mutation in hMSH2 or in hMSH6 was severely affected, but these mutants were still proficient in mismatch binding and were able to complement, albeit to different extents, mismatch repair-deficient cell extracts. The mismatch binding-proficient, ATPase-deficient double mutant was inactive in the complementation assay and its presence in repair-proficient extracts was inhibitory. We conclude that although the ATPase activity of hMutSalpha is dispensible for mismatch binding, it is required for mismatch correction.[1]

References

 
WikiGenes - Universities