The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide.

Strips of rat soleus muscle were incubated in media containing a superoxide generating system and/or the nitric oxide donor sodium nitroprusside (SNP) before the maximal catalytic activities of aconitase, citrate synthase, and oxoglutarate dehydrogenase were measured. The maximal activities of aconitase and oxoglutarate dehydrogenase were both decreased by 25-30% by superoxide anions; however, only the maximal activity of aconitase was decreased, by approximately 50%, by incubation of muscles with SNP. Furthermore, when both superoxide and NO were present in the medium, aconitase activity was decreased by 70%. The maximal activity of citrate synthase was not affected by any of the treatments. This is the first time that superoxide anions or NO has been shown to inactivate aconitase and oxoglutarate dehydrogenase in skeletal muscle. It is suggested that these effects may be responsible for some alterations in skeletal muscle metabolism, and these possibilities are discussed.[1]

References

  1. Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Andersson, U., Leighton, B., Young, M.E., Blomstrand, E., Newsholme, E.A. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
 
WikiGenes - Universities