The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Amino acid substitutions in the subunit interface enhancing thermostability of Thermoplasma acidophilum citrate synthase.

We have used citrate synthase from Thermoplasma (Tp.) acidophilum as a thermostable model system to investigate the role of hydrophobic interactions in dimer interface for maintaining high temperature stability. Three mutant enzymes were constructed by single amino acid substitutions in the interface helices: Ala97-->Ser, Ala104-->Thr, and Gly209-->Ala. All of the mutations enhanced the thermostability of Tp. citrate synthase, while improving its catalytic properties (Km, Vmax, and specific activity). The highest thermostability was achieved by the Gly209-->Ala substitution. The half-life of irreversible inactivation of the G209A mutant enzyme at 85 degreesC was about 57 min, and the midpoint of guanidinium chloride (GdmCl) induced irreversible denaturation was at 2.0 M GdmCl. Our results showed that amino acid substitutions increasing or decreasing interface hydrophobicity could further increase the thermostability of the Tp. citrate synthase. Thus, interface substitutions affecting the entropy of the unfolded state did not prove to be so critical in protein thermostabilization at higher temperatures.[1]

References

 
WikiGenes - Universities