The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Thermoplasma


High impact information on Thermoplasma


Biological context of Thermoplasma


Anatomical context of Thermoplasma


Associations of Thermoplasma with chemical compounds

  • A histone-like protein (HTa) has been isolated from cell extracts of Thermoplasma acidophilum by column chromatography on DNA-cellulose, hydroxylapatite, and Sephadex G-75, HTa elutes from DNA-cellulose in two fractions, one of which contains an 80-residue form of the protein with an NH2-terminal sequence of Val-Gly [16].
  • To gain insight into the mechanism of action by LplA, we have determined the crystal structure of Thermoplasma acidophilum LplA in three forms: (i) the apo form; (ii) the ATP complex; and (iii) the lipoyl-AMP complex [17].
  • Crystallization and preliminary crystallographic study of glucose dehydrogenase from the archaebacterium Thermoplasma acidophilum [18].
  • A ferredoxin from the thermophilic archaebacterium, Thermoplasma acidophilum, is supposed to contain two (4Fe-4S) active centers; one center could be linked by four cysteine residues to the protein and the other bonded with three cysteines and an unknown group [19].
  • Malate dehydrogenases from the thermoacidophilic Archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius have been crystallized and characterized by X-ray diffraction measurements [20].

Gene context of Thermoplasma

  • Although SCO7095 is distantly related to several proline iminopeptidases, including Thermoplasma acidophilum tricorn-interacting F1, no aminopeptidase activity was detected [21].
  • The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Data Bank but not functionally annotated [22].
  • VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase [23].
  • To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced [24].
  • The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum [25].

Analytical, diagnostic and therapeutic context of Thermoplasma


  1. Bifunctional phosphoglucose/phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily. Hansen, T., Wendorff, D., Schönheit, P. J. Biol. Chem. (2004) [Pubmed]
  2. Formation of metal nanoclusters on specific surface sites of protein molecules. Braun, N., Meining, W., Hars, U., Fischer, M., Ladenstein, R., Huber, R., Bacher, A., Weinkauf, S., Bachmann, L. J. Mol. Biol. (2002) [Pubmed]
  3. Ribosome specificity of archaebacterial elongation factor 2. Studies with hybrid polyphenylalanine synthesis systems. Klink, F., Schümann, H., Thomsen, A. FEBS Lett. (1983) [Pubmed]
  4. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Mykytyn, K., Nishimura, D.Y., Searby, C.C., Shastri, M., Yen, H.J., Beck, J.S., Braun, T., Streb, L.M., Cornier, A.S., Cox, G.F., Fulton, A.B., Carmi, R., Lüleci, G., Chandrasekharappa, S.C., Collins, F.S., Jacobson, S.G., Heckenlively, J.R., Weleber, R.G., Stone, E.M., Sheffield, V.C. Nat. Genet. (2002) [Pubmed]
  5. Proteasome from Thermoplasma acidophilum: a threonine protease. Seemüller, E., Lupas, A., Stock, D., Löwe, J., Huber, R., Baumeister, W. Science (1995) [Pubmed]
  6. Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism. Goettig, P., Groll, M., Kim, J.S., Huber, R., Brandstetter, H. EMBO J. (2002) [Pubmed]
  7. In vitro hydrogen production by glucose dehydrogenase and hydrogenase. Woodward, J., Mattingly, S.M., Danson, M., Hough, D., Ward, N., Adams, M. Nat. Biotechnol. (1996) [Pubmed]
  8. The B12-dependent ribonucleotide reductase from the archaebacterium Thermoplasma acidophila: an evolutionary solution to the ribonucleotide reductase conundrum. Tauer, A., Benner, S.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Mykytyn, K., Braun, T., Carmi, R., Haider, N.B., Searby, C.C., Shastri, M., Beck, G., Wright, A.F., Iannaccone, A., Elbedour, K., Riise, R., Baldi, A., Raas-Rothschild, A., Gorman, S.W., Duhl, D.M., Jacobson, S.G., Casavant, T., Stone, E.M., Sheffield, V.C. Nat. Genet. (2001) [Pubmed]
  10. Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum. Kim, Y., Yakunin, A.F., Kuznetsova, E., Xu, X., Pennycooke, M., Gu, J., Cheung, F., Proudfoot, M., Arrowsmith, C.H., Joachimiak, A., Edwards, A.M., Christendat, D. J. Biol. Chem. (2004) [Pubmed]
  11. Crystal structure of an archaeal actin homolog. Roeben, A., Kofler, C., Nagy, I., Nickell, S., Hartl, F.U., Bracher, A. J. Mol. Biol. (2006) [Pubmed]
  12. Kinetics and mechanism of the citrate synthase from the thermophilic archaeon Thermoplasma acidophilum. Kurz, L.C., Drysdale, G., Riley, M., Tomar, M.A., Chen, J., Russell, R.J., Danson, M.J. Biochemistry (2000) [Pubmed]
  13. Amino acid substitutions in the subunit interface enhancing thermostability of Thermoplasma acidophilum citrate synthase. Erduran, I., Kocabiyik, S. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  14. Import of human and Thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Wang, H.R., Kania, M., Baumeister, W., Nederlof, P.M. Eur. J. Cell Biol. (1997) [Pubmed]
  15. Purification and partial characterization of a procaryotic glycoprotein from the plasma membrane of Thermoplasma acidophilum. Yang, L.L., Haug, A. Biochim. Biophys. Acta (1979) [Pubmed]
  16. A histone-like protein (HTa) from Thermoplasma acidophilum. I. Purification and properties. DeLange, R.J., Green, G.R., Searcy, D.G. J. Biol. Chem. (1981) [Pubmed]
  17. Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains. Kim, d.o. .J., Kim, K.H., Lee, H.H., Lee, S.J., Ha, J.Y., Yoon, H.J., Suh, S.W. J. Biol. Chem. (2005) [Pubmed]
  18. Crystallization and preliminary crystallographic study of glucose dehydrogenase from the archaebacterium Thermoplasma acidophilum. Bright, J.R., Mackness, R., Danson, M.J., Hough, D.W., Taylor, G.L., Towner, P., Byrom, D. J. Mol. Biol. (1991) [Pubmed]
  19. Preliminary X-ray diffraction studies on a ferredoxin from the thermophilic archaebacterium, Thermoplasma acidophilum. Tsukihara, T., Fukuyama, K., Wakabayashi, S., Wada, K., Matsubara, H., Kerscher, L., Oesterhelt, D. J. Mol. Biol. (1985) [Pubmed]
  20. Preliminary X-ray crystallographic study of malate dehydrogenases from the thermoacidophilic Archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. Stezowski, J.J., Englmaier, R., Galdiga, C., Hartl, T., Rommel, I., Dauter, Z., Görisch, H., Grossebüter, W., Wilson, K., Musil, D. J. Mol. Biol. (1989) [Pubmed]
  21. Characterization of a novel intracellular endopeptidase of the alpha/beta hydrolase family from Streptomyces coelicolor A3(2). Nagy, I., Banerjee, T., Tamura, T., Schoofs, G., Gils, A., Proost, P., Tamura, N., Baumeister, W., De Mot, R. J. Bacteriol. (2003) [Pubmed]
  22. Solution structure of Archaeglobus fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes. Powers, R., Mirkovic, N., Goldsmith-Fischman, S., Acton, T.B., Chiang, Y., Huang, Y.J., Ma, L., Rajan, P.K., Cort, J.R., Kennedy, M.A., Liu, J., Rost, B., Honig, B., Murray, D., Montelione, G.T. Protein Sci. (2005) [Pubmed]
  23. VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase. Gerega, A., Rockel, B., Peters, J., Tamura, T., Baumeister, W., Zwickl, P. J. Biol. Chem. (2005) [Pubmed]
  24. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Yaoi, T., Laksanalamai, P., Jiemjit, A., Kagawa, H.K., Alton, T., Trent, J.D. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  25. The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Russell, R.J., Hough, D.W., Danson, M.J., Taylor, G.L. Structure (1994) [Pubmed]
  26. Purification and characterization of an intracellular chymotrypsin-like serine protease from Thermoplasma volcanium. Kocabiyik, S., Ozdemir, I. Biosci. Biotechnol. Biochem. (2006) [Pubmed]
WikiGenes - Universities