The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular aspects of the endocytic pathway.

Observation of the flow of material along the endocytic pathway has lead to the description of the basic architecture of the pathway and provided insight into the relationship between compartments. Significant advances have been made in the study of endocytic transport steps at the molecular level, of which studies of cargo selection, vesicle budding and membrane fusion events comprise the major part. Progress in this area has been driven by two approaches, yeast genetics and in vitro or cell-free assays, which reconstitute particular transport steps and allow biochemical manipulation. The complex protein machineries that control vesicle budding and fusion are significantly conserved between the secretory and endocytic pathways such that proteins that regulate particular steps are often part of a larger family of proteins which exercise a conserved function at other locations within the cell. Well characterized examples include vesicle coat proteins, rabs (small GTPases) and soluble N-ethylmaleimide-sensitive fusion protein ( NSF) attachment protein (SNAP) receptors (SNAREs). Intracompartmental pH, lipid composition and cytoskeletal organization have also been identified as important determinants of the orderly flow of material within the endocytic pathway.[1]


  1. Molecular aspects of the endocytic pathway. Clague, M.J. Biochem. J. (1998) [Pubmed]
WikiGenes - Universities