The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Developmental changes in urinary elimination of theophylline and its metabolites in pediatric patients.

We investigated the developmental changes in the pattern of urinary metabolites of theophylline, a substrate for CYP1A2, to study when CYP1A2, which is absent in the perinatal period, fully develops during childhood. The urinary ratios of three metabolites (1-methyluric acid, 3-methylxanthine, and 1,3-dimethyluric acid) to theophylline in patients over 3 y of age show a much larger interindividual variation compared with those under 3 y of age, and the mean values of the ratios in patients over 3 y of age were greater than those in patients under 1 y of age. The urinary ratio of 1,3-dimethyluric acid (a metabolite generated by several cytochrome P450s) to 3-methylxanthine or 1-methyluric acid (metabolites generated by CYP1A2 exclusively) seemed to be relatively constant over 3 y of age; in patients under 3 y of age, these ratios were much higher than those in patients over 3 y of age. The urinary ratio of 1-methyluric acid to 3-methylxanthine or 3-methylxanthine to 1-methyluric acid seemed to be relatively invariable in all patients except those less than 1 y of age. These findings suggest that CYP1A2 activity may be programmed to mature by around 3 y of age and that CYP1A2 probably plays a major role in theophylline 8-hydroxylation at a therapeutic concentration after the full development of CYP1A2 activity.[1]

References

  1. Developmental changes in urinary elimination of theophylline and its metabolites in pediatric patients. Tateishi, T., Asoh, M., Yamaguchi, A., Yoda, T., Okano, Y.J., Koitabashi, Y., Kobayashi, S. Pediatr. Res. (1999) [Pubmed]
 
WikiGenes - Universities