I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3' cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site.
Different species of the amoebo-flagellate Naegleria harbor optional group I introns in the nuclear ribosomal DNA that contain open reading frames. Intron proteins from Naegleria jamiesoni, Naegleria andersoni, and Naegleria italica (named I-NjaI, I-NanI and I-NitI, respectively) were expressed in Escherichia coli and found to be isoschizomeric homing endonucleases that specifically recognize and cleave intron-lacking homologous alleles of ribosomal DNA. The I-NjaI endonuclease was affinity purified, characterized in more detail, and found to generate five-nucleotide 3' staggered ends at the intron insertion site which differs from the ends generated by all other known homing endonucleases. The recognition site was delimited and found to cover an approximately 19 base-pair partially symmetric sequence spanning both the cleavage site and the intron insertion site. The palindromic feature was supported by mutational analysis of the target DNA. All single-site substitutions within the recognition sequence were cleaved by the purified I-NjaI endonuclease, but at different efficiencies. The center of symmetry and cleavage was found to be completely degenerate in specificity, which resembles that of the subclass IIW bacterial restriction enzymes.[1]References
- I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3' cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site. Elde, M., Haugen, P., Willassen, N.P., Johansen, S. Eur. J. Biochem. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg