The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ECs1777  -  endonuclease

Escherichia coli O157:H7 str. Sakai

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ECs1777


High impact information on ECs1777


Chemical compound and disease context of ECs1777


Biological context of ECs1777

  • Although it carries two competent replication systems, a composite plasmid formed in vitro by linkage of the complete ColE1 and pSC101 plasmid replicons at their unique EcoRI endonuclease cleavage sites normally uses only the replication origin and functions of the ColE1 component [15].
  • Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae [16].
  • We describe SegF, a novel site-specific DNA endonuclease encoded by gene 69, which is similar to GIY-YIG homing endonucleases of group I introns [3].
  • To test whether this ORF-encoded double-strand DNA endonuclease is involved in intron mobility in vivo, the same ribosomal cDNA was stably integrated into the C. reinhardtii chloroplast genome using particle gun mediated transformation [17].
  • These observations provide a detailed thermodynamic and kinetic explanation of how single-strand and double-strand methylation protect against endonuclease cleavage in vivo [18].

Anatomical context of ECs1777


Associations of ECs1777 with chemical compounds


Physical interactions of ECs1777

  • The UvrA protein is the DNA binding and damage recognition subunit of the damage-specific UvrABC endonuclease [29].
  • Multicopy expression of rnc70 could suppress a lethal phenotype of the wild-type rnc allele in a certain genetic background; it could also inhibit the RNase III-mediated activation of lambdaN gene translation by competing for the RNA-binding site of the wild-type endonuclease [30].

Other interactions of ECs1777

  • A mutation that inactivates E. coli RNase E also increases the average lifetime of bulk E. coli mRNA and of many individual messages, suggesting that cleavage by this endonuclease may be the rate-determining step in the degradation of most mRNAs in E. coli [31].
  • These large precursors were cleaved by cell extracts first into intermediate size pieces which were subsequently processed by RNase P. On the basis of heat stability of mutant cell extracts, the endonuclease responsible for the initial cleavage appears to be distinct from RNase P and is designated RNase O [32].
  • NaeI, a novel DNA endonuclease, shows topoisomerase and recombinase activities when a Lys residue is substituted for Leu 43 [33].
  • Escherichia coli methyl-directed mismatch repair is initiated by MutS-, MutL-, and ATP-dependent activation of MutH endonuclease, which cleaves at d(GATC) sites in the vicinity of a mismatch [34].
  • We found that the degradation of linear duplex DNA was unaffected, but that the endonuclease and exonuclease activities for single-stranded DNA were inhibited by about 50% and 35%, respectively [35].

Analytical, diagnostic and therapeutic context of ECs1777

  • Using site-directed mutagenesis, we have constructed a universal code equivalent of the r1 ORF that, under appropriate promoter control, allows the overexpression in E. coli of a protein identical to the mitochondrial intron encoded "transposase". This protein exhibits a double strand endonuclease activity specific for the omega- site [8].
  • Fragments of Euglena chloroplast DNA generated by endonuclease R-Eco RI were separated by agarose-gel electrophoresis into 24 distinct bands [36].
  • DNA cleavage and ligation in vivo are precise: recombinant DNA molecules show functional continuity of the gene sequence cleaved by the enzyme and regeneration of nucleotide recognition sites for both the EcoRI endonuclease and the EcoRI DNA methylase [37].
  • Fok I was purified to homogeneity with phosphocellulose, DEAE-Sephadex, and gel chromatography, yielding 50 mg of pure Fok I endonuclease per liter of culture medium [38].
  • Induction of the endonuclease activity was reversible: depletion of Me2SO from the growth medium after treatment for 6 and 18 hr led to a rapid decrease in the level of activity [21].


  1. Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Kleman-Leyer, K., Armbruster, D.W., Daniels, C.J. Cell (1997) [Pubmed]
  2. Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Segall, J., Losick, R. Cell (1977) [Pubmed]
  3. Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. Belle, A., Landthaler, M., Shub, D.A. Genes Dev. (2002) [Pubmed]
  4. UV endonuclease of Micrococcus luteus, a cyclobutane pyrimidine dimer-DNA glycosylase/abasic lyase: cloning and characterization of the gene. Shiota, S., Nakayama, H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  5. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Liu, S.L., Hessel, A., Sanderson, K.E. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  6. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Luan, D.D., Korman, M.H., Jakubczak, J.L., Eickbush, T.H. Cell (1993) [Pubmed]
  7. Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Delahodde, A., Goguel, V., Becam, A.M., Creusot, F., Perea, J., Banroques, J., Jacq, C. Cell (1989) [Pubmed]
  8. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Colleaux, L., d'Auriol, L., Betermier, M., Cottarel, G., Jacquier, A., Galibert, F., Dujon, B. Cell (1986) [Pubmed]
  9. Bacillus subtilis RNAase III cleavage sites in phage SP82 early mRNA. Panganiban, A.T., Whiteley, H.R. Cell (1983) [Pubmed]
  10. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Tomkinson, A.E., Bardwell, A.J., Bardwell, L., Tappe, N.J., Friedberg, E.C. Nature (1993) [Pubmed]
  11. pBR322 plasmid DNA modified with 2-acetylaminofluorene derivatives: transforming activity and in vitro strand cleavage by the Escherichia coli uvrABC endonuclease. Fuchs, R.P., Seeberg, E. EMBO J. (1984) [Pubmed]
  12. Cloning, isolation, and characterization of replication regions of complex plasmid genomes. Timmis, K., Cabello, F., Cohen, S.N. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  13. Endonuclease II, apurinic acid endonuclease, and exonuclease III. Kirtikar, D.M., Cathcart, G.R., Goldthwait, D.A. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  14. Loss of an apurinic/apyrimidinic site endonuclease increases the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine to Escherichia coli. Foster, P.L., Davis, E.F. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  15. Replication control in a composite plasmid constructed by in vitro linkage of two distinct replicons. Cabello, F., Timmis, K., Cohen, S.N. Nature (1976) [Pubmed]
  16. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Gimble, F.S., Thorner, J. Nature (1992) [Pubmed]
  17. Chloroplast ribosomal intron of Chlamydomonas reinhardtii: in vitro self-splicing, DNA endonuclease activity and in vivo mobility. Dürrenberger, F., Rochaix, J.D. EMBO J. (1991) [Pubmed]
  18. Structural adaptations in the interaction of EcoRI endonuclease with methylated GAATTC sites. Jen-Jacobson, L., Engler, L.E., Lesser, D.R., Kurpiewski, M.R., Yee, C., McVerry, B. EMBO J. (1996) [Pubmed]
  19. Release of Escherichia coli DNA from membrane complexes by single-strand endonucleases. Abe, M., Brown, C., Hendrickson, W.G., Boyd, D.H., Clifford, P., Cote, R.H., Schaechter, M. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  20. Infidelity of DNA synthesis associated with bypass of apurinic sites. Schaaper, R.M., Kunkel, T.A., Loeb, L.A. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  21. Induction of a Ca2+, Mg2+-dependent endonuclease activity during the early stages of murine erythroleukemic cell differentiation. McMahon, G., Alsina, J.L., Levy, S.B. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  22. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Rouet, P., Smih, F., Jasin, M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  23. Substrate specificity of a mammalian DNA repair endonuclease that recognizes oxidative base damage. Helland, D.E., Doetsch, P.W., Haseltine, W.A. Mol. Cell. Biol. (1986) [Pubmed]
  24. The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Hennecke, F., Kolmar, H., Bründl, K., Fritz, H.J. Nature (1991) [Pubmed]
  25. Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo. Bolt, E.L., Lloyd, R.G. Mol. Cell (2002) [Pubmed]
  26. The noncovalent complex between DNA and the bifunctional intercalator ditercalinium is a substrate for the UvrABC endonuclease of Escherichia coli. Lambert, B., Jones, B.K., Roques, B.P., Le Pecq, J.B., Yeung, A.T. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  27. Endonuclease-resistant apyrimidinic sites formed by neocarzinostatin at cytosine residues in DNA: evidence for a possible role in mutagenesis. Povirk, L.F., Goldberg, I.H. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  28. Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs. Tsai-Wu, J.J., Liu, H.F., Lu, A.L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  29. Deletion mutagenesis of the Escherichia coli UvrA protein localizes domains for DNA binding, damage recognition, and protein-protein interactions. Claassen, L.A., Grossman, L. J. Biol. Chem. (1991) [Pubmed]
  30. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression. Dasgupta, S., Fernandez, L., Kameyama, L., Inada, T., Nakamura, Y., Pappas, A., Court, D.L. Mol. Microbiol. (1998) [Pubmed]
  31. Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli. Bouvet, P., Belasco, J.G. Nature (1992) [Pubmed]
  32. Sequential processing of precursor tRNA molecules in Escherichia coli. Sakano, H., Shimura, Y. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  33. Structure of NaeI-DNA complex reveals dual-mode DNA recognition and complete dimer rearrangement. Huai, Q., Colandene, J.D., Topal, M.D., Ke, H. Nat. Struct. Biol. (2001) [Pubmed]
  34. Mutation detection with MutH, MutL, and MutS mismatch repair proteins. Smith, J., Modrich, P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  35. Effect of recA protein on the DNAse activities of the recBC enzyme. Prell, A., Wackernagel, W. J. Biol. Chem. (1981) [Pubmed]
  36. Cloned ribosomal RNA genes from chloroplasts of Euglena gracilis. Lomax, M.I., Helling, R.B., Hecker, L.I., Schwartzbach, S.D., Barnett, W.E. Science (1977) [Pubmed]
  37. In vivo site-specific genetic recombination promoted by the EcoRI restriction endonuclease. Chang, S., Cohen, S.N. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  38. Functional domains in Fok I restriction endonuclease. Li, L., Wu, L.P., Chandrasegaran, S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
WikiGenes - Universities