ClC-2 activation modulates regulatory volume decrease.
ClC-2 belongs to a large family of chloride channels and its expression in certain cell types is associated with the appearance of swelling-activated chloride (Cl-) currents. In the present report, we examined the hypothesis that ClC-2 plays a role in regulatory volume decrease by expressing ClC-2 in Sf9 cells using the baculovirus system. First, we showed that ClC-2 protein expression is associated with appearance of a Cl- conductance which is activated by hypo-osmotic shock and can be distinguished from swelling-activated chloride currents endogenous to Sf9 cells on the basis of its pharmacology and specific inhibition by an anti-ClC-2 antibody. Second, we show that the rate of regulatory volume decrease is significantly enhanced in Sf9 cells expressing ClC-2 protein. Hence, our data support the hypothesis that ClC-2 is capable of mediating regulatory volume decrease.[1]References
- ClC-2 activation modulates regulatory volume decrease. Xiong, H., Li, C., Garami, E., Wang, Y., Ramjeesingh, M., Galley, K., Bear, C.E. J. Membr. Biol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg