The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

dcrB  -  putative lipoprotein

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3456, JW5682, yhhR
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of dcrB

  • DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors [1].
  • Heme, a major iron source, is transported through the outer membrane of Gram-negative bacteria by specific heme/hemoprotein receptors and through the inner membrane by heme-specific, periplasmic, binding protein-dependent, ATP-binding cassette permeases [2].
  • The protein contains the sequence Cys-Pro-His-Cys (CPHC) and is highly similar to two other periplasmic CPHC motif-containing proteins: DsbA, an Escherichia coli protein (45% identity, 87% homology) and TcpG, a Vibrio cholerae protein (32% identity, 74% homology) [3].
  • A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd [3].
  • Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster [4].
 

High impact information on dcrB

  • Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space [5].
  • DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase [5].
  • A pleiotropic-negative mutant in mttA prevents the periplasmic localization of twin arginine redox enzymes, including nitrate reductase (NapA) and trimethylamine N-oxide reductase (TorA) [6].
  • The signal peptidase (SPase) from Escherichia coli is a membrane-bound endopeptidase with two amino-terminal transmembrane segments and a carboxy-terminal catalytic region which resides in the periplasmic space [7].
  • Together with the previous contention that the Cpx system senses a protein abnormality not only at periplasmic and outer membrane locations but also at the plasma membrane, abnormal states of membrane proteins are postulated to be generated in these secY mutants [8].
 

Chemical compound and disease context of dcrB

 

Biological context of dcrB

  • The dcrB gene, located at 76.5 min, encodes a 20-kDa processed periplasmic protein, as determined by maxicell analysis, and corresponds to a recently determined open reading frame with a previously unknown function [14].
  • Its adsorption is controlled by at least three bacterial genes: dcrA, dcrB, and btuB [14].
  • Colicin V (ColV) is a peptide antibiotic that kills sensitive cells by disrupting their membrane potential once it gains access to the inner membrane from the periplasmic face [15].
  • This assay uses a chimeric construct composed of the N-terminal DNA binding domain of ToxR (a dimerization-dependent transcriptional activator) fused to a transmembrane domain (tm) of interest and a monomeric periplasmic anchor (the maltose binding protein) [16].
  • Both DsbA and TcpG promote disulfide bond formation in periplasmic proteins, are required for pilus biogenesis, and, like thioredoxin, are capable of reducing insulin in vitro [3].
 

Anatomical context of dcrB

  • Our simulations showed that the entrance of NH(4)(+) into the periplasmic recruitment vestibule requires only 3.1 kcal/mol of energy [17].
  • These results suggest that periplasmic inclusion body formation may result in intermolecular interactions between participating proteins without loss of function of the fused enzymes [18].
  • As characterized for Escherichia coli chemoreceptors, a mechanistically crucial feature of the ligand-induced conformational change is piston sliding towards the cytoplasm of a signalling helix in the periplasmic/transmembrane domain [19].
  • Periplasmic extracts of CCMB1 contained slightly greater concentrations of the thiol functional group (-SH) than did the wild-type strain, an indication that the E(h) of the CCMB1 periplasm was abnormally low [20].
  • Characterization in intact cells and membranes has demonstrated that two of the glutamates are essential for normal levels of NOR activity: E125, which is predicted to be on the periplasmic surface close to helix IV, and E198, which is predicted to lie in the middle of transmembrane helix VI [21].
 

Associations of dcrB with chemical compounds

  • Remarkably, in the presence of ligand, increased reactivity is observed with Cys replacements located predominantly on the periplasmic side of the sugar-binding site [22].
  • The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C [23].
  • Translocation of the two bacterial periplasmic proteins was less sensitive to sodium azide, resembling more the azide-insensitive nature of the chloroplast protein import process [24].
  • We report the 1.14-A resolution crystal structure of the iron-loaded form of the H. influenzae periplasmic ferric ion binding protein (FbpA) mutant H9Q [25].
  • Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP [26].
 

Other interactions of dcrB

  • Cobalamin (Cbl) transport across the outer membrane of cells of Escherichia coli consists of high affinity Cbl binding to the btuB protein of the Cbl receptor, followed by the proton motive force- and tonB-dependent release of the Cbl into the periplasmic space [27].
  • The pco determinant is proposed to exert its effect through periplasmic handling of excess copper ions and to increase the level of resistance to copper ions above that conferred by copA alone [28].
  • Here we show that fusion between Lpp'OmpA(46-159) and bacterial alkaline phosphatase (PhoA), a normally periplasmic dimeric enzyme, are also targeted to the outer membrane [29].
 

Analytical, diagnostic and therapeutic context of dcrB

  • The pore constriction and the periplasmic outlet are very similar to OmpF with 74% of the pore lining residues being conserved [30].
  • Bacterial periplasmic-binding proteins have been utilized for developing reagentless biosensors that report analytes by coupling ligand-binding events to changes in the emission properties of a covalently conjugated environmentally-sensitive fluorophore [31].
  • Western blotting experiments demonstrated that the protein was produced in soluble form and translocated in the periplasmic space [32].
  • The periplasmic expression and the surface display of Chit42, both offer a suitable expression system for protein engineering and activity screening in a microtiter plate scale [33].
  • The histidine-tagged apoclytin expressed into the periplasmic space in E. coli was purified by nickel chelate affinity chromatography [34].

References

  1. DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Samsonov, V.V., Samsonov, V.V., Sineoky, S.P. Res. Microbiol. (2002) [Pubmed]
  2. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Létoffé, S., Delepelaire, P., Wandersman, C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Tomb, J.F. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  4. Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Reyes, F., Gavira, M., Castillo, F., Moreno-Vivián, C. Biochem. J. (1998) [Pubmed]
  5. Crystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation. Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., Ito, K. Cell (2006) [Pubmed]
  6. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Weiner, J.H., Bilous, P.T., Shaw, G.M., Lubitz, S.P., Frost, L., Thomas, G.H., Cole, J.A., Turner, R.J. Cell (1998) [Pubmed]
  7. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Paetzel, M., Dalbey, R.E., Strynadka, N.C. Nature (1998) [Pubmed]
  8. SecY alterations that impair membrane protein folding and generate a membrane stress. Shimohata, N., Nagamori, S., Akiyama, Y., Kaback, H.R., Ito, K. J. Cell Biol. (2007) [Pubmed]
  9. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. Poock, S.R., Leach, E.R., Moir, J.W., Cole, J.A., Richardson, D.J. J. Biol. Chem. (2002) [Pubmed]
  10. Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity. Vassylyev, D.G., Tomitori, H., Kashiwagi, K., Morikawa, K., Igarashi, K. J. Biol. Chem. (1998) [Pubmed]
  11. Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Brondijk, T.H., Fiegen, D., Richardson, D.J., Cole, J.A. Mol. Microbiol. (2002) [Pubmed]
  12. Mutational Analysis of Peptidoglycan Amidase MepA. Firczuk, M.L., Bochtler, M. Biochemistry (2007) [Pubmed]
  13. The Quorum-Sensing Hybrid Histidine Kinase LuxN of Vibrio harveyi Contains a Periplasmically Located N Terminus. Jung, K., Odenbach, T., Timmen, M. J. Bacteriol. (2007) [Pubmed]
  14. Genetic control of the resistance to phage C1 of Escherichia coli K-12. Likhacheva, N.A., Samsonov, V.V., Samsonov, V.V., Sineoky, S.P. J. Bacteriol. (1996) [Pubmed]
  15. Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. Gérard, F., Pradel, N., Wu, L.F. J. Bacteriol. (2005) [Pubmed]
  16. TOXCAT: a measure of transmembrane helix association in a biological membrane. Russ, W.P., Engelman, D.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport. Lin, Y., Cao, Z., Mo, Y. J. Am. Chem. Soc. (2006) [Pubmed]
  18. Formation of active inclusion bodies in the periplasm of Escherichia coli. Ari??, J.P., Miot, M., Sassoon, N., Betton, J.M. Mol. Microbiol. (2006) [Pubmed]
  19. Adaptational modification and ligand occupancy have opposite effects on positioning of the transmembrane signalling helix of a chemoreceptor. Lai, W.C., Beel, B.D., Hazelbauer, G.L. Mol. Microbiol. (2006) [Pubmed]
  20. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. Dale, J.R., Wade, R., Dichristina, T.J. J. Bacteriol. (2007) [Pubmed]
  21. Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme. Butland, G., Spiro, S., Watmough, N.J., Richardson, D.J. J. Bacteriol. (2001) [Pubmed]
  22. Site-directed alkylation and the alternating access model for LacY. Kaback, H.R., Dunten, R., Frillingos, S., Venkatesan, P., Kwaw, I., Zhang, W., Ermolova, N. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  23. Interactions between TonB from Escherichia coli and the Periplasmic Protein FhuD. Carter, D.M., Miousse, I.R., Gagnon, J.N., Martinez, E., Clements, A., Lee, J., Hancock, M.A., Gagnon, H., Pawelek, P.D., Coulton, J.W. J. Biol. Chem. (2006) [Pubmed]
  24. A component of the chloroplast protein import apparatus functions in bacteria. Pang, P., Meathrel, K., Ko, K. J. Biol. Chem. (1997) [Pubmed]
  25. High resolution structure of an alternate form of the ferric ion binding protein from Haemophilus influenzae. Shouldice, S.R., Dougan, D.R., Skene, R.J., Tari, L.W., McRee, D.E., Yu, R.H., Schryvers, A.B. J. Biol. Chem. (2003) [Pubmed]
  26. Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP. Powlowski, J., Sahlman, L. J. Biol. Chem. (1999) [Pubmed]
  27. A requirement for calcium in the transport of cobalamin across the outer membrane of Escherichia coli. Bradbeer, C., Reynolds, P.R., Bauler, G.M., Fernandez, M.T. J. Biol. Chem. (1986) [Pubmed]
  28. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Lee, S.M., Grass, G., Rensing, C., Barrett, S.R., Yates, C.J., Stoyanov, J.V., Brown, N.L. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  29. Characterization of Escherichia coli expressing an Lpp'OmpA(46-159)-PhoA fusion protein localized in the outer membrane. Stathopoulos, C., Georgiou, G., Earhart, C.F. Appl. Microbiol. Biotechnol. (1996) [Pubmed]
  30. Crystal Structure of Osmoporin OmpC from E. coli at 2.0 A. Baslé, A., Rummel, G., Storici, P., Rosenbusch, J.P., Schirmer, T. J. Mol. Biol. (2006) [Pubmed]
  31. Identification of cognate ligands for the Escherichia coli phnD protein product and engineering of a reagentless fluorescent biosensor for phosphonates. Rizk, S.S., Cuneo, M.J., Hellinga, H.W. Protein Sci. (2006) [Pubmed]
  32. Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. Vigentini, I., Merico, A., Tutino, M.L., Compagno, C., Marino, G. J. Biotechnol. (2006) [Pubmed]
  33. Heterologous expression and site-directed mutagenesis studies of two Trichoderma harzianum chitinases, Chit33 and Chit42, in Escherichia coli. Boer, H., Simolin, H., Cottaz, S., S??derlund, H., Koivula, A. Protein Expr. Purif. (2007) [Pubmed]
  34. Expression, purification and characterization of a photoprotein, clytin, from Clytia gregarium. Inouye, S., Sahara, Y. Protein Expr. Purif. (2007) [Pubmed]
 
WikiGenes - Universities