The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The specific binding of retinoic acid to RPE65 and approaches to the treatment of macular degeneration.

RPE65 is essential in the operation of the visual cycle and functions as a chaperone for all-trans-retinyl esters, the substrates for isomerization in the visual cycle. RPE65 stereospecifically binds all-trans-retinyl esters with a K(D) of 47 nM. It is shown here by using a quantitative fluorescence technique, that Accutane (13-cis-retinoic acid), a drug used in the treatment of acne but that causes night blindness, binds to RPE65 with a K(D) of 195 nM. All-trans-retinoic acid binds with a K(D) of 109 nM. The binding of the retinoic acids to RPE65 is competitive with all-trans-retinyl ester binding, and this competition inhibits visual cycle function. A retinoic acid analog that binds weakly to RPE65 is not inhibitory. These data suggest that RPE65 function is rate-limiting in visual cycle function. They also reveal the target through which the retinoic acids induce night blindness. Finally, certain forms of retinal and macular degeneration are caused by the accumulation of vitamin A-based retinotoxic products, called the retinyl pigment epithelium-lipofuscin. These retinotoxic products accumulate during the normal course of rhodopsin bleaching and regeneration after the operation of the visual cycle. Drugs such as Accutane may represent an important approach to reducing the accumulation of the retinotoxic lipofuscin by inhibiting visual cycle function. The identification of RPE65 as the visual cycle target for the retinoic acids makes it feasible to develop useful drugs to treat retinal and macular degeneration while avoiding the substantial side effects of the retinoic acids.[1]

References

  1. The specific binding of retinoic acid to RPE65 and approaches to the treatment of macular degeneration. Gollapalli, D.R., Rando, R.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
 
WikiGenes - Universities