The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Helicobacter pylori vacuolating cytotoxin inhibits duodenal bicarbonate secretion by a histamine-dependent mechanism in mice.

BACKGROUND: The pathogenic mechanisms involved in Helicobacter pylori-induced duodenal mucosal injury are incompletely understood. In the present study, we sought to investigate the effect of H. pylori vacuolating cytotoxin (VacA) on duodenal mucosal bicarbonate (HCO3-) secretion. METHODS: Concentrated bacterial culture supernatants from an H. pylori wild-type strain producing VacA with s1/m1 genotypes (P12) and from an isogenic mutant lacking VacA (P12DeltavacA) were used. HCO3- secretion by murine duodenal mucosa was examined in vitro in Ussing chambers. Duodenal mucosal histamine release was measured using enzyme-linked immunosorbent assay. The expression of histamine H2 receptor was examined by immunohistochemical analysis. RESULTS: In a dose-dependent manner, the VacA-positive supernatant P12 reduced prostaglandin E2 (PGE2)-stimulated duodenal mucosal HCO3- secretion to a maximum of 49% (P<.0001), whereas P12DeltavacA did not result in significant inhibition (P>.05). Purified VacA had a similar effect. Histamine H2 receptor antagonists attenuated the effect of P12 on PGE2-induced HCO3- secretion. P12 stimulated duodenal histamine release in a dose-dependent manner, and exogenous histamine inhibited PGE2-stimulated duodenal HCO3- secretion. H2 receptor expression was found in duodenal epithelial cells, the enteric nerve plexus, and lymphocytes in Peyer's patch. CONCLUSIONS: H. pylori VacA inhibits PGE2-stimulated duodenal epithelial HCO3- secretion by a histamine-dependent mechanism. This effect likely contributes to the damaging effect of H. pylori in the duodenal mucosa.[1]


  1. Helicobacter pylori vacuolating cytotoxin inhibits duodenal bicarbonate secretion by a histamine-dependent mechanism in mice. Tuo, B., Song, P., Wen, G., Sewald, X., Gebert-Vogl, B., Haas, R., Manns, M., Seidler, U. J. Infect. Dis. (2009) [Pubmed]
WikiGenes - Universities